Stereocontrolled synthesis of glucosidic damascenone precursors

Yumiko Yamano, ${ }^{a}$ Yasuko Watanabe, ${ }^{a}$ Naoharu Watanabe ${ }^{b}$ and Masayoshi Ito *a
${ }^{a}$ Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
${ }^{\text {b }}$ Faculty of Agriculture, Shizuoka University, Ohya, Shizuoka 422-8529, Japan

Received (in Cambridge, UK) 6th September 2002, Accepted 22nd October 2002
First published as an Advance Article on the web 15th November 2002

A stereocontrolled synthesis of optically active β-D-glucopyranosides 7-10 and 11-14, glucosidic damascenone precursors, was accomplished utilizing an asymmetric transfer hydrogenation to α, β-acetylenic ketones catalyzed by chiral ruthenium complexes as the key step.

Introduction

Damascenone 1 (Scheme 1) is one of the most important flavor compounds, first identified in Bulgarian rose (Rosa damascena) oil in $1970 .{ }^{1}$ Since then, $\mathbf{1}$ has also been identified ${ }^{2}$ in various types of plant tissues and beverages. It is believed ${ }^{3}$ to be formed in nature from the hydrolytic breakdown of complex secondary metabolites derived from carotenoids such as neoxanthin 2. It was described in the literature ${ }^{4}$ that $\mathbf{1}$ can be formed in vivo, as shown in Scheme 1. However, the direct progenitors of $\mathbf{1}$ are not completely clarified. The β-d-glucopyranosides of C_{13}-acetylenic diol $\mathbf{6}$ and -allenic triol $\mathbf{4}$ have been isolated ${ }^{5-9}$ as glucosidic aroma precursors. The role of the glucosyl moiety in these glucosides is recognized as stabilization of the hydroxy group against hydrolysis. In intact plants, not only the position of the glucosyl moiety but also the stereochemistries of the hydroxy groups in these glucosides are considered to have an influence on the behavior against enzymatic hydrolysis. Their C-3 hydroxy groups are considered to be of β-configuration, because most xantophylls have β-configuration for $\mathrm{C}-3$ hydroxy groups. However, their stereochemistries at C-9 have not been
confirmed yet. In order to clarify their roles as aroma precursors in plants, both the confirmation of their stereochemistries including absolute configurations and the preparation of a diastereomerically pure samples are required. In a previous communication, ${ }^{10}$ we reported stereocontrolled synthesis of $(3 R, 9 S)$ - and ($3 R, 9 R$)-9-O- β-D-glucopyranosides 7 and $\mathbf{8}$ as well as the corresponding $3-O-\beta-\mathrm{D}-\mathrm{glucopyranosides}$ 9 and 10 (Fig. 1) utilizing an asymmetric transfer hydrogenation ${ }^{11}$ to α, β-acetylenic ketones catalyzed by chiral ruthenium complexes as the key step. Afterwards, conversion of these acetylenic diol-glucosides into the corresponding allenic triol glucosides 11-14 was accomplished. In the present paper, we describe their details including relevant work.

Results and discussion

Synthesis of acetylenic diol-glucosides 7-10

Although the $9-O-\beta$-glucoside of acetylenic diol 6 has been prepared ${ }^{12}$ as a diastereomeric mixture, there has been so far reported no stereocontrolled synthesis for the optically active

Scheme 1

Fig. 1
glucoside. In order to synthesize diastereomeric pure glucosides $\mathbf{7 - 1 0}$, diastereomeric pure alcohols 21a,b and 24a,b, key intermediates, were prepared applying $\mathrm{Ru}^{\mathrm{II}}$-promoted asymmetric transfer hydrogenation ${ }^{11}$ to α, β-acetylenic ketones 19 and 17 as shown in Scheme 2.
The known (3R)-3-hydroxy terminal alkyne $\mathbf{1 5}$, ${ }^{13}$ prepared (66%) from ($4 R, 6 R$)-4-hydroxy-2,2,6-trimethylcyclohexanone, ${ }^{14}$ was silylated (99%) to give the tert-butyldimethylsilyl (TBS) ether 16. Reaction of the lithium derivative prepared from n-BuLi and 16 with acetaldehyde, followed by oxidation with MnO_{2} provided α, β-acetylenic ketone 17 (88%), which was deprotected (99%) and then acetylated (96%) to give the acetate 19. Asymmetric transfer hydrogenation ${ }^{18}$ of α, β-acetylenic ketones 17 and 19 using $\mathrm{Ru}^{\text {II }}$ catalysts 20a or $\mathbf{2 0 b}{ }^{15}$ and 2-propanol as the hydrogen donor quantitatively afforded the diastereomeric pure ($>98 \%$ de) alcohol 21a or 21b as well as 24a or 24b, respectively. The absolute stereochemistries at C-9 of these alcohols were determined by the modified Mosher's method. ${ }^{16}$ The (S)- and (R)-MTPA [α-methoxy- α-(trifluoromethyl)phenyl acetic acid] esters of 21a and 24a obtained by use of (S, S)-20a were prepared. The positive $\Delta \delta$ values of $\delta S-\delta R$ were observed on all protons except for the 9 -methyl protons (see Experimental section), indicating that 21a and 24a had S configuration for C-9. In the case of TBS ether 17, the (S)- or (R)-alcohol 24a or 24b could be also prepared via in situ formation of 20a or 20b by mixing $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2},(1 S, 2 S)$ - or $(1 R, 2 R)-N$-(p-toluenesulfonyl)-1,2-diphenylethylethylenediamine (TsDPEN) and KOH in 2-propanol (Ru:diamine: $\mathrm{KOH}=1: 1: 2.5$). ${ }^{11}$ The compounds 24a and 24b were transformed into $\mathbf{2 7 a}$ (99%) and 27b (93%), precursors of the desired glucosides, by acetylation and subsequent desilylation.

Next, the glucosidation of the alcohol 21a was investigated to prepare the ($3 R, 9 S$)-9-O- β-D-glucopyranoside 7 (Scheme 3). We have previously reported ${ }^{17}$ that the reaction of 3 -hydroxy- β -
ionone with tetra- O-benzoyl- α-D-glucopyranosyl bromide 37 using silver triflate as an activator and N, N-tetramethylurea as a proton acceptor gave the ortho ester, whereas the desired β-glucoside was obtained in the absence of N, N-tetramethylurea. In the case of the alcohol 21a, reaction with 37 using silver triflate in the absence of N, N-tetramethylurea provided complex mixtures, probably due to its instability against acidic conditions, whereas the ortho ester $28(61 \%)$ was obtained in the presence of N, N-tetramethylurea as reported ${ }^{17}$ previously. β-Glucosidation of 21a was achieved (95%) by use of tetra- O pivaloyl (Piv)- α-D-glucopyranosyl bromide 38^{18} possessing a sterically bulky acyl group at C-2 position as a glucosyl donor and silver triflate as an activator in the presence of N, N-tetramethylurea. The acyl groups of 29 were removed under basic conditions to give the free alcohol 7 (98%). Since natural glucosides were isolated ${ }^{5,6}$ as pentaacetates, the pentaol 7 was then acetylated to provide the pentaacetate $30(95 \%)$.
$(3 R, 9 R)-9-O-, \quad(3 R, 9 S)-3-O-$ and ($3 R, 9 R$)-3-O- β-d-glucopyranosides 31 (93%), $33(81 \%)$ and $35(79 \%)$ were also prepared (Scheme 3) by a similar glucosidation of alcohols 21b, 24a and 24b, respectively. Deacylation (8: 99\%; 9: 93\%; 10: 99\%) of these glucosides followed by acetylation afforded pentaacetates $\mathbf{3 2}$ (quant.), $\mathbf{3 4}(82 \%)$ and $\mathbf{3 6}(91 \%)$, respectively.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $9-O$-glucosides $\mathbf{3 0}$ and $\mathbf{3 2}$ were similar to each other but indicated characteristic differences around C-9 as shown in the Table 1. Spectral data of the (9S)glucoside 30 were identical with those of the $9-O$-glucoside isolated ${ }^{5}$ from Riesling wine except for the chemical shift of the methyl carbon at $\mathrm{C}-9$ (this ${ }^{5}$ is probably misprint), while those of the $(9 R)$-glucoside 32 were in accordance with those of the $9-O$-gluccoside isolated ${ }^{6}$ from rose petals. On the other hand, comparison of both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 3 - O -glucosides 34 and $\mathbf{3 6}$ showed no difference, but their optical rotation data (Table 1) and CD spectra (Fig. 2) were quite different.

Fig. 2 CD spectra in MeOH of acetylenic diol-glucoside pentaacetates 30, 32, 34 and 36.

Although the ${ }^{1} \mathrm{H}$ NMR data for the $3-O$-glucosides isolated ${ }^{5}$ from Riesling wine were in good agreement with those of 34 and 36, the stereochemistry at C-9 is not confirmed yet as its chiroptical data were not reported.

In order to facilitate the confirmation of the stereochemistries of natural glucosides, separation of synthetic four isomers by HPLC was investigated. As a result, simultaneous separation using a chiral column (CHIRALPAK AD-H; DAICEL) was completely achieved as shown in Fig. 3.

Table 1 Characteristic spectral data for acetylenic diol-glucoside pentaacetates

		9-O-Glucosides				3-O-Glucosides		
		$30(3 R, 9 S)$	$32(3 R, 9 R)$	Glucoside from Riesling wine ${ }^{5}$	Glucoside from rose petals ${ }^{6}$	$34(3 R, 9 S)$	$36(3 R, 9 R)$	Glucoside from Riesling wine ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR	3-H	5.03	5.01	5.03	5.00	3.92	3.92	3.92
$\left(\mathrm{CDCl}_{3}\right)$	9-H	4.80	4.74	4.80	4.74	5.60	5.59	5.60
$\delta: \mathrm{ppm}$	$9-\mathrm{Me}$	1.48	1.51	1.48	1.51	1.52	1.52	1.53
	1'-H	4.88	4.86	4.89	4.86	4.62	4.62	4.61
${ }^{13} \mathrm{C}$ NMR	C3	67.74	67.77	67.72	67.8	73.07	73.07	-
$\left(\mathrm{CDCl}_{3}\right)$	C9	64.30	67.52	64.29	67.5	61.10	61.10	-
$\delta: \mathrm{ppm}$	$9-\mathrm{Me}$	22.35	23.12	27.0	23.1	21.67	21.68	-
	C1'	97.78	98.88	97.79	98.9	99.61	99.60	-
$\underline{[\alpha]_{\mathrm{D}}(\mathrm{MeOH})}$		-62.1	-6.9	-32.6	-	-108.6	+14.6	-

Scheme 2 Reagents: i, TBSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$; ii, n - BuLi then $\mathrm{CH}_{3} \mathrm{CHO}$; iii, MnO_{2}; iv, HF; v, $\mathrm{Ac}_{2} \mathrm{O}$, Py; vi, cat. (S, S)-20a, 2-PrOH; vii, cat. (R, R)20b, 2-PrOH; viii, (S) - or (R)-MTPA, EDC, DMAP; ix, cat. [$\mathrm{RuCl}_{2}(p$-cymene $\left.)\right]_{2}$, cat. (S, S)-TsDPEN, cat. KOH, 2-PrOH; x, cat. $\left[\mathrm{RuCl}{ }_{2}(p-c y m e n e)\right]_{2}$, cat. (R, R)-TsDPEN, cat. KOH, 2-PrOH.

Synthesis of allenic triol-glucosides 11-14

We have recently synthesized ${ }^{9}$ a diastereoisomeric mixture of allenic triol-9- O-glucosides $\mathbf{1 1}$ and $\mathbf{1 2}$ via the direct glucosidation (Scheme 4) of allenic diol 39 derived from grasshopper ketone $3,{ }^{19}$ in order to identify natural allenic triol-glucosides in rose petals. However, the glucosidation of 39 under the same conditions as those (Scheme 3) described for the acetylenic alcohol 21a unfortunately resulted in a complex mixture involving only a trace amount of glucoside 40. It was proposed that the allenic alcohol 39 was extremely unstable even in the slightly acidic medium. Thus, acetylenic diol-glucoside derivatives depicted in Scheme 3 were converted into the corresponding allenic triol-glucosides 11-14 as shown in Scheme 4, according to the synthetic procedure ${ }^{19}$ for grasshopper ketone.

Epoxidation of (9S)-9-O-glucoside 29 with MCPBA provided a mixture of anti-epoxide 41a (37%) and syn-one 41b (49\%), which was cleanly separated by low-pressure liquid chromatography. The relative configurations between the acetoxy and epoxy groups in the two isomers were confirmed from chemical shifts for 2-Hs (41a: $2_{\mathrm{ax}}-\mathrm{H} \delta 1.39,2_{\mathrm{eq}}-\mathrm{H} \delta 1.63$; 41b: $2_{\mathrm{ax}}-\mathrm{H} \delta 1.55,2_{\mathrm{eq}}-\mathrm{H} \delta 1.41$) in both isomers on the basis of the empirical rule. ${ }^{20}$ Treatment of anti-epoxide 41a with excess amounts of DIBAL-H gave a crude product, which was acetylated and purified by silica gel column chromatography to afford the pentaacetate $\mathbf{4 2}$ in 29% for 2 steps. The acyl groups of $\mathbf{4 2}$ were removed under basic conditions to provide the free alcohol 11 in 90%. The stereochemistries of aglycone parts in $\mathbf{4 2}$ and $\mathbf{1 1}$ were chemically proved by hydrolysis of $\mathbf{1 1}$ with β-glucosidase followed by MnO_{2}-oxidation affording

$31 R^{1}=A c, R^{2}=$ Piv
$8 R^{1}=R^{2}=H$
$32 R^{1}=R^{2}=A c$

$35 R^{1}=A c, R^{2}=$ Piv
$10 R^{1}=R^{2}=H$
$36 R^{1}=R^{2}=A c$

Scheme 3 Reagents: i, 37, AgOTf, $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{NMe}_{2}$; ii, 38, $\mathrm{AgOTf}, \mathrm{Me}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{NMe}_{2}$; iii, $\mathrm{LiOH}-\mathrm{MeOH}$; iv, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$.

Fig. 3 HPLC elution profile of a mixture of acetylenic diol-glucoside pentaacetates 30, 32, 34 and 36. Column: CHIRALPAK AD-H $0.46 \times 25 \mathrm{~cm}$; eluent: 2-PrOH-hexane (5:95); flow rate: $0.7 \mathrm{ml} \mathrm{min}^{-1}$; UV detection: 250 nm .
grasshopper ketone 3 , whose ${ }^{1} \mathrm{H}$ NMR data were identical with those reported. ${ }^{19}$ Thus, it was found that the α-hydroxyallene moiety in $\mathbf{1 1}$ was formed via the same pathway ($\mathrm{S}_{\mathrm{N}}{ }^{2}$ 'hydride reduction of ethynylepoxy group in 41a) as reported ${ }^{19}$ for the preparation of grasshopper ketone 3 .
$(3 S, 9 R)-9-O-,(3 S, 9 S)-3-O-$ and $(3 S, 9 R)-3-O-\beta$-glucoside 1214 were also prepared by a similar method as shown in Scheme 4. In the case of preparation of $\mathbf{1 3}$, the pentabenzoylated epoxide 47a was employed, because epoxy-isomers derived from tetrapivalate 33 could not be separated. The stereochemistries of aglycone parts in these three glucosides were also chemically confirmed by transformation into grasshopper ketone 3.

The allenic triol-9-O-glucosides were previously isolated from the leaves of Lycium halimifolium Mill. ${ }^{7}$ as its pentaacetate and from the leaves of Premna subscandens ${ }^{8}$ as a free alcohol. However, the absolute stereochemistry of aglycone parts in these glucosides has not been completely confirmed. ${ }^{1} \mathrm{H}$ NMR spectra of the pentaacetylated glucoside isolated from Lycium halimifolium Mill. ${ }^{7}$ were identical with those of the synthetic $(3 S, 9 R)-\mathbf{4 5}$, while ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the glucoside isolated from Premna subscandens ${ }^{8}$ were in accordance with those of $(3 S, 9 R)-\mathbf{1 2}$. On the other hand, we have recently identified ${ }^{9}$ both ($3 S, 9 S$)- and ($3 S, 9 R$)-9- O-glucosides $\mathbf{1 1}$ and $\mathbf{1 2}$ in rose flowers, based on their synthesis (diastereoisomeric mixture; as described before) and the HPLC-MS analytical data Therefore, its was found that these natural glucosides have the same configuration as the allenic part of proposed parent carotenoid, neoxanthin (Scheme 1).

The allenic triol-3- O-glucosides have not been isolated; however, it is considered that these are distributed in nature because the 3-O-glucoside of grasshopper ketone $\mathbf{3}$ was found ${ }^{21}$ in several plants. In the case of allenic triol-3-O-glucosides, characteristic differences between both free alcohols $\mathbf{1 3}$ and $\mathbf{1 4}$ and their pentaacetates $\mathbf{4 8}$ and $\mathbf{5 1}$ are not observed in their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Thus, separation of these two 3 - O glucosides $\mathbf{1 3}$ and $\mathbf{1 4}$ together with 9-O-glucosides $\mathbf{1 1}$ and $\mathbf{1 2}$ by HPLC was investigated. Since these four glucosides 11-14 did not show a remarkable UV absorption, they are detected as pentabenzoates 43, 46, 49 and 52 , respectively (Scheme 4). Simultaneous separation using a chiral column (CHIRALPAK AD-H; DAICEL) was performed as shown in Fig. 4.

Fig. 4 HPLC elution profile of a mixture of allenic triol-glucoside pentabenzoates 43, 46, 49 and 52. Column: CHIRALPAK AD-H $0.46 \times 25 \mathrm{~cm}$; eluent: EtOH -hexane (1:4); flow rate: $0.7 \mathrm{ml} \mathrm{min}^{-1}$; UV detection: 230 nm .

In summary, we have accomplished a stereocontrolled synthesis of optically active β-D-glucopyranosides 7-10 and 11-14 of the acetylenic diol 6 and the allenic triol 4 , which are suggested to be glucosidic damascenone precursors. Investigation toward the clarification of their role as aroma precursors are now in progress.

Experimental

UV spectra were recorded on a JASCO Ubest-55 instrument. IR spectra were measured on a Perkin Elmer FT-IR spectrometer, model Paragon 1000, for chloroform solutions. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were determined on a Varian Gemini-300 or a Varian VXR-500 superconducting FT-NMR spectrometer, for deuteriochloroform solutions unless otherwise stated (tetramethylsilane or MeOH as internal reference).

41b syn-epoxide 49\%

Scheme 4 Reagents: i, $\mathrm{Ac}_{2} \mathrm{O}$, Py; ii, NaBH_{4}; iii, 38, $\mathrm{AgOTf}, \mathrm{Me}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{NMe}_{2}$; iv, MCPBA; v, DIBAL-H; vi, NaOMe-MeOH; vii, β-glucosidase; viii, MnO_{2}; ix, $\mathrm{BzCl}, \mathrm{Py}$.
J-Values are given in Hz. Mass spectra were taken on a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter ($[a]_{\mathrm{D}}$ values are in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$) and CD spectra on a Shimadzu-AVIN 62A DS circular dichroism spectrometer.

Column chromatography (CC) was performed on silica gel (Merck Art. 7734). Short-column chromatography (SCC) was conducted on silica gel (Merck Art. 7739) under reduced pressure. Solid phase extraction (SPE) CC was performed using injector on the very short column (Mallinckrodt Baker) packed by small particle of silica gel. Low-pressure CC was carried out on a Yamazen Low pressure Liquid Chromatography System using a Lobar column (Merck LiChroprep Si 60). PTLC was performed on silica gel plate (Merck silica gel $60 \mathrm{~F}_{254}$ precoated plate, 0.25 mm thickness). PHPLC was carried out on a Shimadzu LC-6A with a UV-VIS detector.

All operations were carried out under nitrogen or argon. Evaporation of the extract or the filtrate was carried out under reduced pressure. Ether refers to diethyl ether, and hexane to n-hexane. NMR assignments are given using the carotenoid numbering system.

1,1-Dimethylethyl\{[(1R)-4-ethynyl-3,5,5-trimethylcyclohex-3enyl]oxy\}dimethylsilane 16

A solution of $\mathrm{TBSCl}(8.25 \mathrm{~g}, 54.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml})$ was added slowly to a stirred solution of $(3 R)-3$ hydroxy terminal alkyne $\mathbf{1 5}^{13}(8.16 \mathrm{~g}, 50.0 \mathrm{mmol})$, DMAP $(7.28 \mathrm{~g}, 59.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(8.34 \mathrm{ml}, 59.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at rt for 1.5 h , poured into chilled water and extracted with ether. The extracts were washed successively with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue, which was purified by CC (ether-hexane, $5: 95)$ to afford the TBS ether $16(13.65 \mathrm{~g}, 99 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}^{25}-61.0(c .1 .20, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 3307(\equiv \mathrm{CH})$, $2086(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2)$, 0.89 $(9 \mathrm{H}, \mathrm{s}$, tert -Bu), 1.12 and 1.16 (each 3 H , s, gem-Me), 1.44 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.71\left(1 \mathrm{H}, \mathrm{ddd}, J 12,3.5\right.$ and $\left.2,2-\mathrm{H}_{\text {eq }}\right), 1.89$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.05\left(1 \mathrm{H}\right.$, ddquint., $J 17.5,9$ and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right)$, $2.25\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}_{\text {eq }}\right), 3.08(1 \mathrm{H}$, br s, $8-\mathrm{H}), 3.92$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) $278.2071\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}\right.$ requires 278.2065).

4-(\{(4R)-4-[(1,1-Dimethylethyl)dimethylsilyl]oxy\}-2,6,6-trimethylcyclohex-1-enyl)but-3-yn-2-one 17

To a solution of the terminal alkyne $\mathbf{1 6}(5.00 \mathrm{~g}, 18.0 \mathrm{mmol})$ in dry THF (50 ml) was added $n-\operatorname{BuLi}(1.56 \mathrm{M}$ in hexane; 13.8 ml , 21.5 mmol) at $-40^{\circ} \mathrm{C}$ and the mixture was stirred for a further 15 min . Acetaldehyde (2 ml) was added to this mixture and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 10 min and rt for 15 min . After being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether. The extracts were washed with brine, dried and evaporated to give the crude adduct which, without purification, was dissolved in ether-hexane (1:5) and shaken with active $\mathrm{MnO}_{2}(160 \mathrm{~g})$ at rt for 15 h . The mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by CC (ether-hexane, 15:85) to provide the acetylenic ketone $17(4.82 \mathrm{~g}, 84 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}^{26}-61.8$ (c. $1.09, \mathrm{MeOH}) ; \lambda_{\max } / \mathrm{nm} 212,283 ; v_{\max } / \mathrm{cm}^{-1} 2178(\mathrm{C} \equiv \mathrm{C}), 1664$ (conj. C=O), $1607(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.08(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2)$, $0.90(9 \mathrm{H}, \mathrm{s}$, tert -Bu), 1.13 and 1.18 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.47 $\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.73\left(1 \mathrm{H}\right.$, ddd, $J 12.5,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right)$, $1.96(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.11\left(1 \mathrm{H}, \mathrm{ddq}, J 18,9\right.$ and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right), 2.34$ $\left(1 \mathrm{H}\right.$, ddd-like, $J 18,6$ and $\left.1,4-\mathrm{H}_{\mathrm{eq}}\right), 2.38(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 3.94$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; m / z$ (EI) $320.2165\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}\right.$ requires 320.2170).

4-[(4R)-4-Hydroxy-2,6,6-trimethylcyclohex-1-enyl]but-3-yn-2-one 18

Aq. $47 \% \mathrm{HF}(1 \mathrm{ml})$ was added to a solution of the silyl ether $\mathbf{1 7}$ $(5.64 \mathrm{~g}, 17.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 30 min and then neutralized with saturated aq. NaHCO_{3}. After $\mathrm{CH}_{3} \mathrm{CN}$ was evaporated off, the organics were extracted with ether. The extracts were washed with brine, dried and evaporated to give a residue, which was purified by SCC (acetone-hexane, 3:7) to afford the 3-hydroxy compound $\mathbf{1 8}$ ($3.61 \mathrm{~g}, 99 \%$) as a pale yellow oil; $[a]_{\mathrm{D}}^{26}-100.7$ (c. $\left.1.10, \mathrm{MeOH}\right)$; $\lambda_{\max } / \mathrm{nm} 212,283 ; v_{\max } / \mathrm{cm}^{-1} 3608$ and $3482(\mathrm{OH}), 2180(\mathrm{C} \equiv \mathrm{C})$, 1664 (conj. $\mathrm{C}=\mathrm{O}$), $1613(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.14$ and 1.20 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.46\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.85(1 \mathrm{H}$, ddd, $J 12,3.5$ and $2,2-\mathrm{H}_{\mathrm{eq}}$), $1.97(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.10(1 \mathrm{H}$, ddd, $J 18$, 9 and $1,4-\mathrm{H}_{\mathrm{ax}}$), $2.39(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.48(1 \mathrm{H}$, ddd, $J 18,6$ and 2 , $4-\mathrm{H}_{\mathrm{eq}}$), $3.99(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \mathrm{m} / z$ (EI) $206.1311\left(\mathrm{M}^{+}, \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right.$ requires 206.1306).

4-[(4R)-4-Acetyloxy-2,6,6-trimethylcyclohex-1-enyl]but-3-yn-2-one 19

$\mathrm{Ac}_{2} \mathrm{O}(7 \mathrm{ml})$ was added to a solution of the 3-hydroxy ketone $\mathbf{1 8}$ $(3.16 \mathrm{~g}, 17.5 \mathrm{mmol})$ in pyridine (Py) $(20 \mathrm{ml})$ and the reaction mixture was stirred at rt for 2 h , poured into ice-water and extracted with ether. The extracts were washed with aq. 5% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by CC (acetone-hexane, 1:3) to afford the acetate $19(4.18 \mathrm{~g}, 96 \%)$ as a pale yellow solid; $[a]_{\mathrm{D}}^{29}-58.2$ (c. 1.08, EtOH); $\lambda_{\text {max }} / \mathrm{nm} 212$, 280; $v_{\max } / \mathrm{cm}^{-1} 2181(\mathrm{C} \equiv \mathrm{C}), 1732$ (COO), 1665 (conj. C=O), $1615(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.18$ and 1.21 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.58\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.85(1 \mathrm{H}$, ddd, $J 12.5,3.5$ and 2 , $2-\mathrm{H}_{\mathrm{eq}}$), $1.97(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.16(1 \mathrm{H}, \mathrm{ddq}$, $J 18,9$ and $\left.1.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.39(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.56(1 \mathrm{H}$, ddd, $J 18$, 6 and $1,4-\mathrm{H}_{\mathrm{eq}}$), $5.03(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; m / z(\mathrm{CI}) 249.1485\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}$ requires 249.1489).

Asymmetric transfer hydrogenation of α, β-acetylenic ketones 17 and 19 using (S, S)-Ru ${ }^{\text {II }}$ catalyst 20a or (R, R)-Ru ${ }^{\text {II }}$ catalyst 20b; typical procedure
To a solution of the 3-acetoxy acetylenic ketone $19(2.61 \mathrm{~g}, 10.5$ mmol) in 2-propanol (105 ml) was added the (S, S)-Ru ${ }^{\text {II }}$ catalyst $20 \mathbf{a}^{15}(126 \mathrm{mg}, 0.21 \mathrm{mmol})$ and the mixture was stirred at rt for 2 h . After evaporation of 2-propanol, the residue was purified
by CC (acetone-hexane, 1:3) to provide the ($3 R, 9 S$)-alcohol $21 \mathbf{1 a}(2.63 \mathrm{~g}$, quant.; 98% de) as a pale yellow oil.

The optical purity of 21a and 21b was calculated by analytical HPLC (CHIRALPAK AS; DAICEL IND., Ltd., $0.46 \times 25 \mathrm{~cm}$; 2-propanol-hexane, 4:96, $0.7 \mathrm{ml} \mathrm{min}^{-1} ; 25^{\circ} \mathrm{C}$; 250 nm detect.) and that of $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ by analytical HPLC (CHIRALPAK AS; DAICEL IND., Ltd., $0.46 \times 25 \mathrm{~cm}$; 2-propanol-hexane, $0.5: 99.5,0.5 \mathrm{ml} \mathrm{min}^{-1} ; 25^{\circ} \mathrm{C} ; 250 \mathrm{~nm}$ detect.).

Compound 21a. $[a]_{D}^{25}-72.4$ (c. 1.00, MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3603$ and $3436(\mathrm{OH}), 2210(\mathrm{C} \equiv \mathrm{C}), 1729(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.15$ and 1.17 (each 3 H , s, gem-Me), 1.51 ($3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}$), 1.54 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.81\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.87$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.09(1 \mathrm{H}, \mathrm{br}$ dd, $J 18$ and 9.5 , $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.46\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 4.71(1 \mathrm{H}, \mathrm{q}, J 6.5$, $9-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; m / z(\mathrm{EI}) 250.1577\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\right.$ requires 250.1568).

Compound 21b. $[a]_{\mathrm{D}}^{25}-33.2$ (c. $\left.1.06, \mathrm{MeOH}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3602$ and $3466(\mathrm{OH}), 2210(\mathrm{C} \equiv \mathrm{C}), 1730(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.14$ and 1.17 (each 3 H , s, gem-Me), 1.51 ($3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}$), 1.54 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.81(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{OH}), 1.81(1 \mathrm{H}, \mathrm{ddd}, J 12$, 3.5 and $2,2-\mathrm{H}_{\text {eq }}$), $1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.10$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.46(1 \mathrm{H}$, br dd, $J 18$ and 4 , $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 4.71(1 \mathrm{H}$, quint.-like, $J 6.5,9-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) $250.1567\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\right.$ requires 250.1568).

Compound 24a. $[a]_{\mathrm{D}}^{29}-75.2$ (c. 1.01, MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3604$ and $3446(\mathrm{OH}), 2209(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times$ 2), $0.89(9 \mathrm{H}, \mathrm{s}$, tert- Bu), 1.10 and 1.13 (each 3 H , s, gem-Me), $1.44\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.50(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.70(1 \mathrm{H}$, ddd, $J 12.5,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.86(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.96(1 \mathrm{H}, \mathrm{d}$, $J 5, \mathrm{OH}), 2.05\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.24(1 \mathrm{H}, \mathrm{br}$ dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.91(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.70(1 \mathrm{H}$, quint.-like, $J 6.5,9-\mathrm{H}) ; m / z$ (EI) $322.2337\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}\right.$ requires 322.2326).

Compound 24b. $[a]_{\mathrm{D}}^{27}-43.1$ (c. $\left.1.04, \mathrm{MeOH}\right) ; v_{\max } / \mathrm{cm}^{-1} 3607$ and $3446(\mathrm{OH}), 2209(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times$ 2), $0.89(9 \mathrm{H}, \mathrm{s}$, tert-Bu), 1.10 and 1.14 (each 3 H , s, gem-Me), $1.44\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.50(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.70(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.86(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.05\left(1 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.24(1 \mathrm{H}, \mathrm{br}$ dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.91(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H})$; m / z (EI) $322.2308\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}\right.$ requires 322.2326).

Asymmetric transfer hydrogenation of the α, β-acetylenic ketone 17 via in situ formation of $(S, S)-\mathrm{Ru}^{\mathrm{II}}$ catalyst 20a or $(R, R)-\mathrm{Ru}^{\mathrm{II}}$ catalyst 20b

To a solution of $\left[\operatorname{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}(12 \mathrm{mg}, 0.020 \mathrm{mmol})$ and (S, S)-TsDPEN or (R, R)-TsDPEN ($14.6 \mathrm{mg}, 0.040 \mathrm{mmol}$) in 2-propanol $(4 \mathrm{ml})$ were added $\mathrm{KOH}(5.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ and then a solution of acetylenic ketone $17(648 \mathrm{mg}, 2.02 \mathrm{mmol})$ in 2-propanol (12 ml). The mixture was stirred at rt for 2 h . After evaporation of 2-propanol, the residue was purified by SCC (ether-hexane, 1:4) to provide the ($3 R, 9 S$)-alcohol 24a or the ($3 R, 9 R$)-alcohol 24b, quantitatively.

Preparation of (S) - and (R)-MTPA esters of ($\mathbf{3 R , 9 S}$)-9-hydroxy compounds 21a and 24a; typical procedure
To a solution of the ($3 R, 9 S$)-alcohol 21a ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) and (S)-MTPA ($70 \mathrm{mg}, 0.30 \mathrm{mmol}$) and DMAP ($37 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added EDC $\{1$-[3-(dimethyl-amino)propyl]-3-ethylcarbodiimide hydrochloride\} (58 mg , 0.30 mmol) at $0^{\circ} \mathrm{C}$. After being stirred at rt for 30 min , the reaction mixture was diluted with ether. The organic layer was washed successively with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue,
which was purified by SCC (ether-hexane, 3:7 to acetonehexane, 3:7) to afford the (S)-MTPA ester $22(37 \mathrm{mg}, 40 \%$) and the recovered alcohol 21a ($22 \mathrm{mg}, 44 \%$).

Compound 22 [(\boldsymbol{S})-MTPA ester of 21a]. $v_{\max } / \mathrm{cm}^{-1} 2218$ $(\mathrm{C} \equiv \mathrm{C}), 1748$ and $1732(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.136(6 \mathrm{H}$, s, gem$\mathrm{Me}), 1.534\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.573(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.813$ $\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.1.5,2-\mathrm{H}_{\text {eq }}\right), 1.848(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.036$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.099\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.466(1 \mathrm{H}$, br dd, $J 18$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.589(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.012(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 5.829(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}), 7.34-7.42$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.54 $7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) $466.1961\left(\mathrm{M}^{+}, \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~F}_{3}\right.$ requires 466.1965).

Compound 23 [($\boldsymbol{R})$-MTPA ester of 21a]. $v_{\text {max }} / \mathrm{cm}^{-1} 2218$ $(\mathrm{C} \equiv \mathrm{C}), 1747$ and $1731(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.100$ and 1.111 (each 3 H , s, gem-Me), $1.523\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.632(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.800\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.1.5,2-\mathrm{H}_{\text {eq }}\right), 1.818$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.036(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.088(1 \mathrm{H}$, brdd, $J 18$ and 9 , $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.454\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.564(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.002(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.820(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}), 7.33-7.43(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}$), 7.52-7.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); m / z (EI) 466.1966 (M^{+}, $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~F}_{3}$ requires 466.1965).

Compound 25 [(S)-MTPA ester of 24a]

$v_{\text {max }} / \mathrm{cm}^{-1} 2214(\mathrm{C}=\mathrm{C}), 1749(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.068(6 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe} \times 2), 0.893(9 \mathrm{H}, \mathrm{s}$, tert-Bu), 1.088 and 1.106 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.432\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.568(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me})$, $1.698\left(1 \mathrm{H}\right.$, ddd, $J 12.5,3.5$ and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.840(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.053\left(1 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.253(1 \mathrm{H}$, ddd, $J 17.5,5.5$ and $\left.1.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.591(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.912(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.832$ $(1 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, 9-\mathrm{H}), 7.34-7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.53-7.59(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) $538.2740\left(\mathrm{M}^{+}, \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Si}\right.$ requires 538.2724).

Compound 26 [(\boldsymbol{R})-MTPA ester of 24a]. $v_{\max } / \mathrm{cm}^{-1} 2215$ $(\mathrm{C} \equiv \mathrm{C}), 1748(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.062(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2)$, $0.887(9 \mathrm{H}, \mathrm{s}$, tert-Bu), 1.052 and 1.080 (each 3H, s, gem-Me), $1.416\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.622(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.685(1 \mathrm{H}$, ddd, $J 12,3.5$ and $2,2-\mathrm{H}_{\mathrm{eq}}$, $1.801(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.037(1 \mathrm{H}$, dd, $J 18$ and $9.5,4-\mathrm{H}_{\mathrm{ax}}$), $2.238\left(1 \mathrm{H}\right.$, br dd, $J 18$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.562$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.898(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.815(1 \mathrm{H}, \mathrm{t}, J 6.5,9-\mathrm{H})$, 7.33-7.42 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.51-7.57$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); m/z (EI) $538.2714\left(\mathrm{M}^{+}, \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{O}_{4}\right.$ Si requires 538.2724).

(1R)-4-[(3S)-3-Acetyloxybut-1-ynyl]-3,5,5-trimethylcyclohex-3-enol 27a

According to the procedure described in the preparation of the 3 -acetoxy acetylenic ketone 19, acetylation of the 9 -hydroxy compound $24 \mathrm{a}(1.51 \mathrm{~g})$ afforded the acetate, which without purification was desilylated in the same manner as described for the preparation of the 3-hydroxy acetylenic ketone $\mathbf{1 8}$. The resulting crude product was purified by SCC (acetone-hexane, 3:7) to provide the 3-hydroxy compound $\mathbf{2 7 a}(1.15 \mathrm{~g}, 99 \%$ from 24a) as a pale yellow oil; $[a]_{\mathrm{D}}^{27}-209.5$ (c. $\left.1.01, \mathrm{MeOH}\right) ; v_{\max } /$ $\mathrm{cm}^{-1} 3607$ and $3450(\mathrm{OH}), 2221(\mathrm{C} \equiv \mathrm{C}), 1732(\mathrm{COO}), 1627$ $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11$ and 1.15 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.41 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.53(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 1.81\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.02\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 17.5$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.38$ $\left(1 \mathrm{H}\right.$, ddd, $J 17.5,5.5$ and $\left.2,4-\mathrm{H}_{\text {eq }}\right), 3.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.60(1 \mathrm{H}$, $\mathrm{q}, J 6.5,9-\mathrm{H}) ; m / z(\mathrm{EI}) 250.1582\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\right.$ requires 250.1568).

(1R)-4-[(3R)-3-Acetyloxybut-1-ynyl]-3,5,5-trimethylcyclohex-3-enol 27b

According to the procedure described in the preparation of the compound $\mathbf{2 7 a}$, acetylation of the 9 -hydroxy compound 24b $(2.65 \mathrm{~g})$ followed by desilylation afforded the 3-hydroxy com-
pound 27 b ($1.91 \mathrm{~g}, 93 \%$) as a pale yellow oil; $[a]_{\mathrm{D}}^{26}+50.6(c .0 .97$, $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3606$ and $3453(\mathrm{OH}), 2221(\mathrm{C} \equiv \mathrm{C}), 1732$ (COO), $1625(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.10$ and 1.16 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.42\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.53(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me})$, $1.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.81\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\text {eq }}\right), 1.88$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.02\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 17$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.07(3 \mathrm{H}, \mathrm{s}$, $\mathrm{AcO}), 2.39\left(1 \mathrm{H}, \mathrm{ddd}, J 17,5.5\right.$ and $2,4-\mathrm{H}_{\mathrm{eq}}$), $3.96(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $5.60(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}) ; m / z(\mathrm{EI}) 250.1571\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\right.$ requires 250.1568).

1,2-O-(\{(1S)-4-[(4R)-4-Acetyloxy-2,6,6-trimethylcyclohex-1-enyl]but-3-yn-2-yl\}phenylmethylene)-3,4,6-tri- O-benzoyl- α-dglucopyranose 28

To a stirred suspension of tetra- O-benzoyl- α-d-glucosyl bromide $37(1.80 \mathrm{~g}, 2.73 \mathrm{mmol})$, ($3 R, 9 S$)-9-hydroxy compound 21a $(530 \mathrm{mg}, 2.12 \mathrm{mmol}), N, N$-tetramethylurea $(0.76 \mathrm{ml}, 6.35$ $\mathrm{mmol})$ and powdered molecular sieves $4 \AA(7 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{ml})$ was added $\operatorname{AgOTf}(1.08 \mathrm{~g}, 4.20 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 15 min , the reaction was quenched with saturated aq. NaHCO_{3}. The reaction mixture was diluted with AcOEt and filtered through Celite. The organic layer of the filtrate was washed with brine, dried and evaporated to give a residue, which was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane-ether, 5:4:0.7) to afford the ortho ester $\mathbf{2 8}(1.07 \mathrm{~g}, 61 \%)$ as a colorless foam; $[a]_{\mathrm{D}}^{23}-83.6(c .0 .99, \mathrm{MeOH}) ; \lambda_{\max } / \mathrm{nm} 231,274 ; v_{\max } / \mathrm{cm}^{-1}$ $1727(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.05$ and 1.10 (each 3 H , s, gem-Me), $1.37(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.47\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.73(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.1.5,2-\mathrm{H}_{\text {eq }}\right), 1.80(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.01(3 \mathrm{H}, \mathrm{s}$, $\mathrm{AcO}), 2.02\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 2.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 18\right.$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right)$, $4.12\left(1 \mathrm{H}\right.$, ddd, $J 12,4.5$ and $\left.3,5^{\prime}-\mathrm{H}\right), 4.33(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H})$, $4.37\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.51(1 \mathrm{H}, \mathrm{dd}, J 12$ and 3 , $\left.6^{\prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}\right.$, ddd, $J 5,3$ and 1, $\left.2^{\prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $5.52\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9,4^{\prime}-\mathrm{H}\right), 5.79\left(1 \mathrm{H}, \mathrm{dd}, J 3\right.$ and $\left.1,3^{\prime}-\mathrm{H}\right), 6.10$ $\left(1 \mathrm{H}, \mathrm{d}, J 5,1^{\prime}-\mathrm{H}\right), 7.17-7.65(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.83-8.10(8 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ; m / z$ (SIMS) $851.3061\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{49} \mathrm{H}_{48} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 851.3041).

β-Glucosidation of alcohols 21a, 21b, 27a and 27b; typical procedure

To a stirred suspension of tetra- O-pivaloyl- α-D-glucosyl bromide 38 ($8.18 \mathrm{~g}, 14.6 \mathrm{mmol}$), ($3 R, 9 S$)-9-hydroxy compound 21a ($1.83 \mathrm{~g}, 7.32 \mathrm{mmol}$), N, N-tetramethylurea ($3.40 \mathrm{ml}, 28.4 \mathrm{mmol}$) and powdered molecular sieves $4 \AA(20 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ was added $\mathrm{AgOTf}(5.64 \mathrm{~g}, 21.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 30 min and rt for 2 h , the reaction was quenched with saturated aq. NaHCO_{3}. The reaction mixture was diluted with AcOEt and filtered through Celite. The organic layer of the filtrate was washed with brine, dried and evaporated to give a residue which was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ hexane-ether, 5:4:0.7) to afford the β-glucoside $29(5.22 \mathrm{~g}, 95 \%)$ as a colorless foam.

Compound 29 [β-glucoside of 21a]. [a] $]_{D}^{27}-46.7$ (c. 0.92 , MeOH); $\lambda_{\max } / \mathrm{nm} 230 ; v_{\max } / \mathrm{cm}^{-1} 2211$ (C $=\mathrm{C}$), 1739 (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11,1.15,1.16$ and 1.22 (each $9 \mathrm{H}, \mathrm{s}$, tert $-\mathrm{Bu} \times 4$), 1.15 and 1.17 (each 3 H , s, gem-Me), $1.45(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$, $9-\mathrm{Me}), 1.56\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.84(1 \mathrm{H}$, ddd, $J 12,3.5$ and 2 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.12(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $J 17.5$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.49\left(1 \mathrm{H}\right.$, br dd, $\left.J 17.5,5.5,4-\mathrm{H}_{\text {eq }}\right), 3.71$ $\left(1 \mathrm{H}\right.$, ddd, $J 9.5,6$ and $\left.1.5,5^{\prime}-\mathrm{H}\right), 4.06(1 \mathrm{H}$, dd, $J 12$ and 6 , $\left.6^{\prime}-\mathrm{H}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.1.5,6^{\prime}-\mathrm{H}\right), 4.81(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H})$, $4.92\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.30\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$; m / z (SIMS) $771.4308\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 771.4291).

Compound 31 [β-glucoside of 21b]. $[a]_{\mathrm{D}}^{26}+5.9$ (c. 1.02 , $\mathrm{MeOH}) ; \lambda_{\text {max }} / \mathrm{nm} 231 ; v_{\text {max }} / \mathrm{cm}^{-1} 2212$ ($\mathrm{C} \equiv \mathrm{C}$), 1736 (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11,1.15,1.16$ and 1.21 (each 9 H , s, tert $-\mathrm{Bu} \times 4$),
1.14 and 1.17 (each 3 H , s, gem-Me), 1.50 ($3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}$), $1.55\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.82\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right)$, $1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.10(1 \mathrm{H}, \mathrm{br}$ dd, $J 17.5$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.46\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.72$ $\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5.5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 5.5 , $\left.6^{\prime}-\mathrm{H}\right), 4.19\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H})$, $4.89\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{dd}$, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.12\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.30(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.3^{\prime}-\mathrm{H}\right)$; m / z (SIMS) $771.4312\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 771.4291).

Compound 33 [β-glucoside of 27a]. [a] $]_{\mathrm{D}}^{27}-77.1$ (c. 1.04, $\mathrm{MeOH}) ; \lambda_{\max } \mathrm{nm} 231 ; v_{\max } / \mathrm{cm}^{-1} 2211(\mathrm{C}=\mathrm{C}), 1739$ (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08$ and 1.12 (each 3 H , s, gem-Me), $1.11(9 \mathrm{H}, \mathrm{s}$, tert-Bu), $1.15(18 \mathrm{H}, \mathrm{s}$, tert $-\mathrm{Bu} \times 2), 1.22(9 \mathrm{H}, \mathrm{s}$, tert-Bu), 1.48 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.52(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.84(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.89\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.01(1 \mathrm{H}, \mathrm{br}$ dd, $J 17$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.30(1 \mathrm{H}$, br dd, $J 17$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.73\left(1 \mathrm{H}\right.$, ddd, $J 9.5,6.5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 3.93(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.99\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6.5,6^{\prime}-\mathrm{H}\right), 4.26(1 \mathrm{H}, \mathrm{dd}, J 12$ and 2 , $\left.6^{\prime}-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.99\left(1 \mathrm{H}\right.$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right)$, $5.06\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.32\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.59(1 \mathrm{H}$, $\mathrm{q}, J 6.5,9-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (SIMS) $771.4297\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 771.4291).

Compound 35 [β-glucoside of 27b]. $[\alpha]_{\mathrm{D}}^{24}+24.6$ (c. 0.98 , $\mathrm{MeOH}) ; \lambda_{\text {max }} / \mathrm{nm} 231 ; v_{\max } / \mathrm{cm}^{-1} 2221$ ($\mathrm{C} \equiv \mathrm{C}$), 1739 (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.07$ and 1.13 (each 3 H , s, gem-Me), 1.11, 1.15, 1.16 and 1.22 (each 9 H , s, tert-Bu $\times 4$), $1.48\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.52(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.84(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.89(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.01\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.07$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.30\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.73(1 \mathrm{H}$, ddd, $J 9.5,6.5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{dd}, J 12$ and $\left.6.5,6^{\prime}-\mathrm{H}\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.66(1 \mathrm{H}, \mathrm{d}, J 8$, $\left.1^{\prime}-\mathrm{H}\right), 4.99\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$, $5.32\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.59(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}) ; m / z$ (SIMS) $771.4311\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 771.4291).

Methanolysis of tetrapivalates 29, 31, 33 and 35; typical procedure

To a solution of the tetrapivalate $29(955 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{ml})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(134 \mathrm{mg}, 3.19 \mathrm{mmol})$ and the mixture was stirred at rt for 20 h . To this mixture was added Dowex $50 \mathrm{~W}-\mathrm{X} 8\left(\mathrm{H}^{+}\right)(4 \mathrm{~g})$ and stirring continued at rt for a further 10 min . After Dowex was filtered off, the filtrate was evaporated to give a residue, which was purified by SCC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 85: 15\right)$ to yield the pentaol $7(463 \mathrm{mg}, 98 \%)$ as a colorless foam.

(3R,9S)-9-O-Glucoside 7

$[a]_{\mathrm{D}}^{27}-169.2(c .0 .98, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.06$ and 1.11 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.38\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.48(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.78\left(1 \mathrm{H}\right.$, ddd, $J 12,3$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.84(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 2.00\left(1 \mathrm{H}\right.$, dd, $J 17.5$ and $\left.10,4-\mathrm{H}_{\mathrm{ax}}\right), 2.38(1 \mathrm{H}$, br dd, $J 17.5$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.26\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8.5,2^{\prime}-\mathrm{H}\right), 3.35$ (1 H , t-like, $J 9.5,4^{\prime}-\mathrm{H}$), 3.39 (1 H , ddd, $J 9.5,5.5$ and $2,5^{\prime}-\mathrm{H}$), $3.44\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 3.86$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 3.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, J 8.5$, $\left.1^{\prime}-\mathrm{H}\right), 4.93(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 21.63$ $\left(9-\mathrm{CH}_{3}\right), 21.85\left(5-\mathrm{CH}_{3}\right), 27.84\left(1-\mathrm{CH}_{3}\right), 29.76\left(1-\mathrm{CH}_{3}\right), 35.92$ (C1), 39.86 (C4), 45.03 (C2), 60.83 (C6'), 64.37 (C3), 64.83 (C9), 69.77 ($\mathrm{C} 4^{\prime}$), 73.03 ($\mathrm{C} 2^{\prime}$), 76.02 and 76.25 (C^{\prime} and $\mathrm{C} 5^{\prime}$), 84.62 (C7), 92.63 (C8), 99.64 (Cl^{\prime}), 122.31 (C6), 140.50 (C5); m / z (SIMS) $393.1910\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}\right.$ requires 393.1887).
(3R,9R)-9-O-Glucoside 8. $[a]_{D}^{27}-23.5$ (c. $0.89, \mathrm{MeOH}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.06$ and 1.11 (each 3 H , s, gem-Me), 1.38 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.49(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.77(1 \mathrm{H}$, ddd,
$J 12,3$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.84(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.00(1 \mathrm{H}, \mathrm{br}$ dd, $J 17.5$ and $\left.9.5,4-\mathrm{H}_{\text {ax }}\right), 2.38\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $\left.5,4-\mathrm{H}_{\text {eq }}\right), 3.23$ ($1 \mathrm{H}, \mathrm{dd}, J 9$ and $8.5,2^{\prime}-\mathrm{H}$), 3.38-3.45 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$), $3.44\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4,6^{\prime}-\mathrm{H}\right)$, $3.81\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 12.5,6^{\prime}-\mathrm{H}\right), 3.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{d}$, $\left.J 8.5,1^{\prime}-\mathrm{H}\right), 4.81(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $21.80\left(5-\mathrm{CH}_{3}\right), 21.89\left(9-\mathrm{CH}_{3}\right), 27.84\left(1-\mathrm{CH}_{3}\right), 29.70\left(1-\mathrm{CH}_{3}\right)$, 35.91 (C1), 39.84 (C4), 45.02 (C2), 60.69 (C^{\prime}), 64.38 (C3), 67.49 (C9), 69.44 (C^{\prime}), 73.39 (C^{\prime} '), 75.86 (C^{\prime}), 76.08 (C5'), 84.09 (C7), 93.45 (C8), 101.33 (Cl^{\prime}), 122.35 (C6), 140.51 (C5); m / z (SIMS) $393.1903\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}\right.$ requires 393.1887).
($\mathbf{3 R}, \mathbf{9 S}$)-3-O-Glucoside 9. $[a]_{\mathrm{D}}^{27}-75.4$ (c. $\left.0.92, \mathrm{MeOH}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.07$ and 1.11 (each 3 H , s, gem-Me), 1.43 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.47\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.84(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.91\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.06(1 \mathrm{H}$, br dd, $J 18$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.50\left(1 \mathrm{H}\right.$, ddd, $J 18,5.5$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 3.19$ (1 H , dd, $J 9$ and $8,2^{\prime}-\mathrm{H}$), $3.34\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.9,4^{\prime}-\mathrm{H}\right), 3.40$ (1 H , ddd, $J 9.5,5.5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 3.44\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$, $3.67\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 3.86(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 2 , $\left.6^{\prime}-\mathrm{H}\right), 4.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.70(1 \mathrm{H}, \mathrm{q}$, $J 6.5,9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 21.67\left(5-\mathrm{CH}_{3}\right), 23.58\left(9-\mathrm{CH}_{3}\right)$, $27.64\left(1-\mathrm{CH}_{3}\right), 29.61\left(1-\mathrm{CH}_{3}\right), 35.97(\mathrm{C} 1), 37.32(\mathrm{C} 4), 43.55$ (C2), 58.27 (C9), 60.85 (C^{\prime}), 69.79 (C4'), 73.08 (C3), 73.28 (C^{\prime}), 75.93 and 76.04 (C^{\prime} and $\mathrm{C} 5^{\prime}$), 82.08 (C7), 95.90 (C8), 100.76 (C1'), 122.58 (C6), 139.35 (C5); m/z (SIMS) 393.1894 $\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}\right.$ requires 393.1887).
(3R,9R)-3-O-Glucoside 10. $[a]_{\mathrm{D}}^{26}-46.3$ (c. 0.93 , MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.06$ and 1.11 (each 3 H , s, gem-Me), 1.43 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.47\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.83(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.90\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.06(1 \mathrm{H}$, br dd, $J 18$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.51(1 \mathrm{H}$, ddd, $J 18,5.5$ and 2 , $4-\mathrm{H}_{\mathrm{eq}}$), $3.19\left(1 \mathrm{H}\right.$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $\left.9,4^{\prime}-\mathrm{H}\right), 3.39\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5.5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 3.44$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.5,6^{\prime}-\mathrm{H}\right), 3.86$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{d}$, $\left.J 8,1^{\prime}-\mathrm{H}\right), 4.70(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 21.67$ $\left(5-\mathrm{CH}_{3}\right), 23.59\left(9-\mathrm{CH}_{3}\right), 27.65\left(1-\mathrm{CH}_{3}\right), 29.61\left(1-\mathrm{CH}_{3}\right), 35.97$ (C1), 37.32 (C4), 43.55 (C2), 58.27 (C9), 60.85 (C6'), 69.79 $\left(\mathrm{C}^{\prime}\right), 73.07(\mathrm{C} 3), 73.27\left(\mathrm{C}^{\prime}\right), 75.93$ and $76.03\left(\mathrm{C}^{\prime}{ }^{\prime}\right.$ and C5'), 82.08 (C7), 95.89 (C8), 100.76 (Cl^{\prime}), 122.58 (C6), 139.31 (C5); m/z (SIMS) $393.1910\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}\right.$ requires 393.1887).

Acetylation of pentaols 7, 8, 9 and 10; typical procedure

To a solution of the pentaol 7 in $\mathrm{Py}(5 \mathrm{ml})$ was added $\mathrm{Ac}_{2} \mathrm{O}$ $(1.5 \mathrm{ml})$ and the reaction mixture was stirred at rt for 20 h , poured into ice-water and extracted with AcOEt. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13: 87$) to afford the pentaacetate $30(448 \mathrm{mg}, 95 \%)$ as a colourless foam. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the synthetic ($3 R, 9 S$)-9-O-glucoside 30 were in agreement with those of the $9-O$-glucoside isolated ${ }^{5}$ from Riesling wine, except for the methyl carbon at C-9 (lit. ${ }^{5}: \delta 27.0$). While those of the synthetic ($3 R, 9 R$)-9-O-glucoside 31 were in accordance with those of $9-O$-glucosde isolated ${ }^{6}$ from rose petals, except for $\mathrm{C}-2^{\prime}\left(\right.$ lit. $^{6}: \delta 71.8$).
($\mathbf{3 R}, \mathbf{9 S}$)-9-O-Glucoside pentaacetate 30. $[a]_{\mathrm{D}}^{26}-62.1$ (c. 0.98 , MeOH); $\lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeOH}) 230 ; \nu_{\max } / \mathrm{cm}^{-1} 2212$ ($\mathrm{C} \equiv \mathrm{C}$), 1755 $(\mathrm{COO}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.16$ and 1.18 (each 3 H , s, gem-Me), 1.48 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.56\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.84(1 \mathrm{H}, \mathrm{ddd}$, $J 12,3.5$ and $2,2-\mathrm{H}_{\text {eq }}$), $1.88(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.01, 2.02, 2.03, 2.05 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 5$), $2.12(1 \mathrm{H}$, br dd, $J 17.5$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.48\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.69(1 \mathrm{H}$, ddd, $J 9.5,4.5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.14(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 2.5 ,
$\left.6^{\prime}-\mathrm{H}\right), 4.28\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.80(1 \mathrm{H}, \mathrm{q}, J 6.5$, $9-\mathrm{H}), 4.88\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{dd}$, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.21(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 20.61,20.75$ and $21.36\left(\mathrm{CH}_{3} \mathrm{COO} \times 3\right)$, $20.64\left(\mathrm{CH}_{3} \mathrm{COO} \times 2\right), 22.30\left(5-\mathrm{CH}_{3}\right), 22.35\left(9-\mathrm{CH}_{3}\right), 28.52$ $\left(1-\mathrm{CH}_{3}\right), 30.09\left(1-\mathrm{CH}_{3}\right), 35.93(\mathrm{Cl}), 37.33(\mathrm{C} 4), 42.15(\mathrm{C} 2)$, 61.91 (C6'), 64.30 (C9), 67.74 (C3), 68.53 (C4'), 71.08 (C2'), 71.87 (C5'), 73.07 (C3'), 83.80 (C7), 91.83 (C8), 97.78 (C1'), 123.16 (C6), 137.84 (C5), 169.38, 169.42, 170.33, 170.67 and $170.69\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right) ; m / z(\mathrm{SIMS}) 603.2432\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{12} \mathrm{Na}$ requires 603.2415).
(3R,9R)-9-O-Glucoside pentaacetate 32. $[\alpha]_{\mathrm{D}}^{27}-6.9$ (c. 0.87 , $\mathrm{MeOH}) ; \lambda_{\max } / \mathrm{nm}(\mathrm{MeOH}) 231 ; v_{\max } / \mathrm{cm}^{-1} 2212(\mathrm{C} \equiv \mathrm{C}), 1756$ (COO); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.15$ and 1.17 (each 3 H , s, gem-Me), 1.51 $(3 \mathrm{H}, \mathrm{d}, J 7,9-\mathrm{Me}), 1.55\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.82(1 \mathrm{H}, \mathrm{ddd}, J 12$, 3.5 and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.88(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.01,2.02,2.03,2.05$ and 2.06 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 5$), $2.11\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $9,4-\mathrm{H}_{\mathrm{ax}}$), $2.47\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.71(1 \mathrm{H}$, ddd, $J 9.5$, 4.5 and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.25$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.74(1 \mathrm{H}, \mathrm{q}, J 7,9-\mathrm{H}), 4.86$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 8 , $\left.2^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.21\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}) 20.60,20.70$ and $21.36\left(\mathrm{CH}_{3} \mathrm{COO} \times 3\right), 20.63\left(\mathrm{CH}_{3} \mathrm{COO}\right.$ $\times 2), 22.30\left(5-\mathrm{CH}_{3}\right), 23.12\left(9-\mathrm{CH}_{3}\right), 28.52\left(1-\mathrm{CH}_{3}\right), 30.08$ $\left(1-\mathrm{CH}_{3}\right), 35.96(\mathrm{C} 1), 37.33(\mathrm{C} 4), 42.17(\mathrm{C} 2), 62.04\left(\mathrm{C}^{\prime}\right)$, 67.52 (C9), 67.77 (C3), 68.41 (C4'), 71.48 (C2'), 71.89 (C5'), 72.99 (C3'), 84.05 (C7), 91.96 (C8), 98.88 ((C1'), 123.22 (C6), $137.89(\mathrm{C} 5), 169.27,169.38$ and $170.34\left(\mathrm{CH}_{3} \mathrm{COO} \times 3\right), 170.66$ $\left(\mathrm{CH}_{3} \mathrm{COO} \times 2\right) ; \mathrm{m} / \mathrm{z}($ SIMS $) 603.2406\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 603.2415).
$\mathbf{(3 R , 9 S}) \mathbf{- 3}-\boldsymbol{O}$-Glucoside pentaacetate 34. $[a]_{\mathrm{D}}^{27}-108.6$ (c. 0.87, $\mathrm{MeOH}) ; \lambda_{\max } / \mathrm{nm}(\mathrm{MeOH}) 231 ; \nu_{\max } / \mathrm{cm}^{-1} 2212$ (C $=\mathrm{C}$), 1755 (COO); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.10$ and 1.13 (each 3 H , s, gem-Me), $1.50\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.52(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.86(3 \mathrm{H}$, $\mathrm{s}, 5-\mathrm{Me}), 1.90\left(1 \mathrm{H}\right.$, ddd, $J 12.5,3.5$ and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.01$, $2.03,2.04,2.07$ and 2.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 5$), $2.02(1 \mathrm{H}$, $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.32\left(1 \mathrm{H}\right.$, brdd, $J 17$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.71(1 \mathrm{H}$, ddd, $J 9.5,5.5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{dd}$, $J 12.5$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.24\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 4.62$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.96\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.06(1 \mathrm{H}$, $\left.\mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.21\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.60(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H})$; $\delta_{\mathrm{C}}(125 \mathrm{MHz}) 20.61,20.63,20.67,20.75$ and $21.13\left(\mathrm{CH}_{3} \mathrm{COO} \times\right.$ 5), $21.67\left(9-\mathrm{CH}_{3}\right), 22.37\left(5-\mathrm{CH}_{3}\right), 28.53\left(1-\mathrm{CH}_{3}\right), 30.09$ $\left(1-\mathrm{CH}_{3}\right), 36.17(\mathrm{C} 1), 37.89(\mathrm{C} 4), 44.06$ (C2), 61.10 (C9), 62.30 (C^{\prime}), 68.62 ($\mathrm{C} 4^{\prime}$), 71.51 (C2'), 71.83 (C5'), 72.86 (C^{\prime}), 73.07 (C3), 82.44 (C7), 92.06 (C8), 99.61 (Cl^{\prime}), 123.48 (C6), 137.65 (C5), 169.23, 169.42, 169.98, 170.32 and 170.63 $\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right) ; \mathrm{m} / \mathrm{z}($ SIMS $) 603.2433\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 603.2415).
(3R,9R)-3-O-Glucoside pentaacetate 36. $[a]_{\mathrm{D}}^{26}+14.6$ (c. 1.02, $\mathrm{MeOH}) ; \lambda_{\max } / \mathrm{nm}(\mathrm{MeOH}) 231 ; v_{\max } / \mathrm{cm}^{-1} 2221(\mathrm{C} \equiv \mathrm{C}), 1755$ (COO); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.09$ and 1.14 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.50 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.52(3 \mathrm{H}, \mathrm{d}, J 7,9-\mathrm{Me}), 1.86(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $1.90\left(1 \mathrm{H}\right.$, ddd, $J 13,3.5$ and $2,2-\mathrm{H}_{\mathrm{eq}}$, 2.01, 2.03, 2.04, 2.07 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 5), 2.02\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}\right), 2.32(1 \mathrm{H}, \mathrm{br}$ dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.71\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5.5$ and $\left.2,5^{\prime}-\mathrm{H}\right)$, $3.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.13\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.24(1 \mathrm{H}, \mathrm{dd}$, $J 12$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.21\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$, $5.59(1 \mathrm{H}, \mathrm{q}, J 7,9-\mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 20.61,20.63,20.67,20.75$ and $21.13\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right)$, $21.68\left(9-\mathrm{CH}_{3}\right), 22.37\left(5-\mathrm{CH}_{3}\right), 28.54$ $\left(1-\mathrm{CH}_{3}\right), 30.09\left(1-\mathrm{CH}_{3}\right), 36.17(\mathrm{C} 1), 37.89(\mathrm{C} 4), 44.05(\mathrm{C} 2)$, 61.10 (C9), 62.29 (C^{\prime}), 68.62 (C 4 '), 71.51 (C2'), 71.83 (C5'), 72.86 (C3'), 73.07 (C3), 82.44 (C7), 92.04 (C8), $99.60\left(\mathrm{Cl}^{\prime}\right)$, 123.48 (C6), 137.66 (C5), 169.24, 169.43, 170.00, 170.33 and $170.64\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right) ; \mathrm{m} / \mathrm{z}(\mathrm{SIMS}) 603.2406\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{12} \mathrm{Na}$ requires 603.2415).

Epoxidation of tetrapivalates 29, 31 and 35; typical procedure

A solution of MCPBA $(74 \%, 3.49 \mathrm{~g}, 15.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(130 \mathrm{ml})$ was added dropwise to an ice-cooled solution of the tetrapivalate $29(7.42 \mathrm{~g}, 9.92 \mathrm{mmol})$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and rt for 5 h . After the reaction mixture was quenched with aq. $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated off and the organics were extracted with AcOEt. The extracts were washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane-ether, 5:4:0.8) and then low-pressure CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane-ether, 3:6:1) to afford the anti-epoxide 41a $(2.83 \mathrm{~g}, 37 \%)$ and the syn-epoxide $\mathbf{4 1 b}(3.74 \mathrm{~g}, 49 \%)$ as colorless foams, respectively.

Separation of epoxides 50a,b was conducted by low-pressure CC (ether-benzene, 7.5:92.5).

Compound 41a. $[a]_{\mathrm{D}}^{27}-24.7$ (c. $1.01, \mathrm{MeOH}$); $v_{\max } / \mathrm{cm}^{-1}$ $1739(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11$ and 1.22 (each 9 H , s, tert $-\mathrm{Bu} \times$ 2), $1.16(18 \mathrm{H}$, s, tert- $\mathrm{Bu} \times 2$), 1.15 and 1.25 (each 3 H , s, gem-Me), $1.39\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.8,2-\mathrm{H}_{\mathrm{ax}}\right), 1.42(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.48(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.63(1 \mathrm{H}, \mathrm{br}$ dd, $J 13.5$ and $\left.3,2-\mathrm{H}_{\mathrm{eq}}\right), 1.81\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.6.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02(3 \mathrm{H}$, $\mathrm{s}, \mathrm{AcO}), 2.39\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 15\right.$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right), 3.71(1 \mathrm{H}$, ddd, $J 9.5,6$ and $\left.1.5,5^{\prime}-\mathrm{H}\right), 4.05\left(1 \mathrm{H}\right.$, dd, $J 12$ and $\left.6,6^{\prime}-\mathrm{H}\right)$, $4.22\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.1.5,6^{\prime}-\mathrm{H}\right)$, $4.69(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H})$, $4.85\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{dd}$, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.30(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.3^{\prime}-\mathrm{H}\right) ; m / z$ (SIMS) $787.4247\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 787.4241).

Compound 41b. $[a]_{\mathrm{D}}^{26}-49.2$ (c. $1.02, \mathrm{MeOH}$); $v_{\max } / \mathrm{cm}^{-1}$ $1740(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11(9 \mathrm{H}, \mathrm{s}$, tert-Bu), $1.16(18 \mathrm{H}$, s , tert $-\mathrm{Bu} \times 2), 1.18(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.22(12 \mathrm{H}, \mathrm{s}$, tert -Bu and $1-\mathrm{Me}), 1.41\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4.5$ and $\left.1.5,2-\mathrm{H}_{\text {eq }}\right), 1.43$ $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.47(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.55(1 \mathrm{H}, \mathrm{t}, J 12.5$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.83\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02(3 \mathrm{H}, \mathrm{s}$, $\mathrm{AcO}), 2.33\left(1 \mathrm{H}\right.$, ddd, $J 14.5,7.5$ and $\left.1.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.69(1 \mathrm{H}$, ddd, $J 9.5,6$ and $\left.2,5^{\prime}-\mathrm{H}\right), 4.06(1 \mathrm{H}$, dd, $J 12.5$ and 6 , $\left.6^{\prime}-\mathrm{H}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.68(1 \mathrm{H}, \mathrm{q}, J 6.5$, $9-\mathrm{H}), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 8.5,1^{\prime}-\mathrm{H}\right), 4.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.04(1 \mathrm{H}$, dd, $J 9.5$ and $\left.8.5,2^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.28(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right) ; \mathrm{m} / \mathrm{z}$ (SIMS) $787.4248\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 787.4241).

Compound 44a. $[a]_{\mathrm{D}}^{26}+19.8$ (c. $1.01, \mathrm{MeOH}$); $\times v_{\max } / \mathrm{cm}^{-1}$ $1737(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11,1.15,1.16$ and 1.22 (each 9 H , s, tert $-\mathrm{Bu} \times 4$), 1.13 and 1.24 (each 3 H , s, gem-Me), $1.37(1 \mathrm{H}$, dd, $J 13.5$ and $\left.8,2-\mathrm{H}_{\mathrm{ax}}\right), 1.46(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.48(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.60\left(1 \mathrm{H}\right.$, ddd, $J 13.5,3.5$ and $\left.1,2-\mathrm{H}_{\mathrm{eq}}\right), 1.79(1 \mathrm{H}$, dd, $J 15$ and $6.5,4-\mathrm{H}_{\mathrm{ax}}$), $2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.36(1 \mathrm{H}$, ddd, $J 15,5.5$ and $\left.1,4-\mathrm{H}_{\mathrm{eq}}\right), 3.71\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 4.06(1 \mathrm{H}$, dd, $J 12.5$ and $\left.5,6^{\prime}-\mathrm{H}\right), 4.18\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.55(1 \mathrm{H}$, $\mathrm{q}, J 6.5,9-\mathrm{H}), 4.76\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.04$ $\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.14\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.29(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right) ; \mathrm{m} / \mathrm{z}$ (SIMS) $787.4243\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 787.4241).

Compound 44b. $[a]_{\mathrm{D}}^{25}+14.1$ (c. $\left.1.06, \mathrm{MeOH}\right) ; v_{\max } / \mathrm{cm}^{-1}$ $1737(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.11(9 \mathrm{H}$, s, tert-Bu), $1.15(18 \mathrm{H}, \mathrm{s}$, tert $-\mathrm{Bu} \times 2), 1.17(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.22(12 \mathrm{H}$, s, tert -Bu and $1-\mathrm{Me}), 1.39\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4$ and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.45(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.45(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.53\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.81$ $\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.31(1 \mathrm{H}, \mathrm{br}$ dd, $J 15$ and $7.5,4-\mathrm{H}_{\mathrm{eq}}$), $3.71\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5$ and $\left.2,5^{\prime}-\mathrm{H}\right), 4.07$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.5,6^{\prime}-\mathrm{H}\right), 4.19\left(1 \mathrm{H}\right.$, dd, $J 12.5$ and $\left.2,6^{\prime}-\mathrm{H}\right)$, $4.55(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}), 4.76\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.86(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 5.04\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.14\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$, $5.29\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right) ; m / z$ (SIMS) $787.4250\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{Na}$ requires 787.4241).

Compound 50a. $[\alpha]_{\mathrm{D}}^{23}+37.9$ (c. $\left.1.06, \mathrm{MeOH}\right) ; v_{\max } / \mathrm{cm}^{-1} 1740$ (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08$ and 1.20 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.10, $1.15,1.16$ and 1.21 (each 9 H , s, tert-Bu $\times 4$), $1.32(1 \mathrm{H}$, dd, $J 13$ and $\left.9.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.44(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.48(3 \mathrm{H}, \mathrm{d}, J 7,9-\mathrm{Me}), 1.64$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8,4-\mathrm{H}_{\mathrm{ax}}\right), 1.65\left(1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{eq}}\right), 2.05(3 \mathrm{H}, \mathrm{s}$, $\mathrm{AcO}), 2.24\left(1 \mathrm{H}\right.$, br dd, $J 14.5$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.69(1 \mathrm{H}$, ddd, $J 9.5,6.5$ and $\left.1.5,5^{\prime}-\mathrm{H}\right), 3.75(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{dd}, J 12$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.24\left(1 \mathrm{H}\right.$, dd, $J 12$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.55(1 \mathrm{H}, \mathrm{d}, J 8$, $\left.1^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}\right.$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$, $5.29\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.45(1 \mathrm{H}, \mathrm{q}, J 7,9-\mathrm{H}) ; m / z$ (SIMS) $765.4417\left(\mathrm{M}^{+}+\mathrm{H}, \mathrm{C}_{41} \mathrm{H}_{65} \mathrm{O}_{13}\right.$ requires 765.4422).

Compound 50b. $[\alpha]_{\mathrm{D}}^{23}+15.1$ (c. 0.99 , MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.13$ and 1.14 (each 3 H , s, gem-Me), 1.10 and 1.22 (each $9 \mathrm{H}, \mathrm{s}$, tert $-\mathrm{Bu} \times 2$), $1.15(18 \mathrm{H}, \mathrm{s}$, tert- $\mathrm{Bu} \times 2$), $1.42(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.44\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.48(3 \mathrm{H}, \mathrm{d}, J 6.5$, $9-\mathrm{Me}), 1.75\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO})$, $2.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.7.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.70(1 \mathrm{H}$, ddd, $J 10,6$ and 2, $\left.5^{\prime}-\mathrm{H}\right), 3.81(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.97\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.27$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.94(1 \mathrm{H}, \mathrm{dd}$, $J 10$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.30(1 \mathrm{H}, \mathrm{t}, J 10$, $\left.3^{\prime}-\mathrm{H}\right), 5.45(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}) ; m / z$ (SIMS) $765.4413\left(\mathrm{M}^{+}+\mathrm{H}\right.$, $\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{O}_{13}$ requires 765.4422).

Synthesis of epoxide 47a,b

$\mathrm{BzCl}(4.85 \mathrm{ml}, 41.8 \mathrm{mmol})$ was added to a solution of the pentaol $9(1.55 \mathrm{~g}, 4.19 \mathrm{mmol})$ in $\mathrm{Py}(6.5 \mathrm{ml})$ and the reaction mixture was stirred at rt for 16 h , poured into ice-water and extracted with AcOEt. The extracts were washed with aq. 5% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (AcOEt-hexane, 1:3) to afford the pentabenzoate ($2.96 \mathrm{~g}, 79 \%$) as a colorless foam; $[a]_{\mathrm{D}}^{22}-14.1\left(c .0 .99, \mathrm{CHCl}_{3}\right) ; \lambda_{\max } / \mathrm{nm} 230$, $273 ; v_{\max } / \mathrm{cm}^{-1} 2217(\mathrm{C}=\mathrm{C}), 1732(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.02$ and 1.05 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.48 ($1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}$), $1.64(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.71(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.92(1 \mathrm{H}$, ddd, $J 12,3.5$ and 2 , $\left.2-\mathrm{H}_{\text {eq }}\right), 1.95\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.24(1 \mathrm{H}, \mathrm{br}$ dd, $J 18$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.19(1 \mathrm{H}$, ddd, $J 10,6$ and 3 , $\left.5^{\prime}-\mathrm{H}\right), 4.50\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.63(1 \mathrm{H}, \mathrm{dd}, J 12$ and 3 , $\left.6^{\prime}-\mathrm{H}\right), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.50\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right)$, $5.61\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{t}$, $\left.J 10,3^{\prime}-\mathrm{H}\right), 7.25-7.59(15 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\mathrm{H}), 7.81-8.07(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ; m / z$ (SIMS) $913.3202\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{54} \mathrm{H}_{50} \mathrm{O}_{12} \mathrm{Na}\right.$ requires 913.3197). According to the procedure described in the epoxidation of tetrapivalates $\mathbf{2 9}, \mathbf{3 1}$ and $\mathbf{3 5}$, this pentabenzoate (641 mg) was treated with MCPBA. The resulting crude products were purified by SCC (AcOEt-hexane, 1:3) and then low-pressure $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane-AcOEt, 4:6:0.7) to afford the anti-epoxide 47 ($308 \mathrm{mg}, 47 \% ; 37 \%$ from 9) and the synepoxide 47b ($183 \mathrm{mg}, 28 \% ; 22 \%$ from 9) as colourless foams, respectively.

Compound 47a. $[a]_{\mathrm{D}}^{22}-10.7$ (c. 1.03, CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1} 1731$ (COO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.02$ and 1.15 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.26 $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.33\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.10,2-\mathrm{H}_{\mathrm{ax}}\right), 1.55(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $8,4-\mathrm{H}_{\mathrm{ax}}$), $1.58(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.68(1 \mathrm{H}$, ddd, $J 13.5,3.5$ and $\left.1,2-\mathrm{H}_{\mathrm{eq}}\right), 2.17(1 \mathrm{H}$, ddd, $J 14.5,3.5$ and 1 , $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 3.80(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.15\left(1 \mathrm{H}\right.$, ddd, $J 10,6$ and $\left.3,5^{\prime}-\mathrm{H}\right)$, $4.49\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.3,6^{\prime}-\mathrm{H}\right)$, $4.87\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right)$, $5.62\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.70(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}), 5.90(1 \mathrm{H}$, $\left.\mathrm{t}, J 10,3^{\prime}-\mathrm{H}\right), 7.24-7.59(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.81-8.05(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ; m / z$ (SIMS) $929.3151\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{54} \mathrm{H}_{50} \mathrm{O}_{13} \mathrm{Na}\right.$ requires $929.3146)$.

Compound 47b. $[a]_{\mathrm{D}}^{21}+9.1\left(c .0 .99, \mathrm{CHCl}_{3}\right) ; \lambda_{\max } / \mathrm{nm} 230,273$; $v_{\text {max }} / \mathrm{cm}^{-1} 1730(\mathrm{COO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.05$ and 1.08 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.32(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.45\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.61(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.69\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.10,4-\mathrm{H}_{\mathrm{ax}}\right), 2.06(1 \mathrm{H}, \mathrm{dd}$,
$J 15$ and $7,4-\mathrm{H}_{\mathrm{eq}}$), $3.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{ddd}, J 10,6$ and $\left.3,5^{\prime}-\mathrm{H}\right), 4.49\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.62(1 \mathrm{H}, \mathrm{dd}, J 12$ and $\left.3,6^{\prime}-\mathrm{H}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.45\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right)$, $5.59\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.69(1 \mathrm{H}, \mathrm{q}, J 6.5,9-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{t}$, $\left.J 10,3^{\prime}-\mathrm{H}\right), 7.25-7.61(15 \mathrm{H}, \mathrm{m}, ~ A r-H), 7.80-8.07(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (SIMS) $929.3129\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{54} \mathrm{H}_{50} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 929.3146).

Synthesis of allenic triol-glucoside pentaacetates 42, 45, 48 and 51 from anti-epoxides 41a, 44a, 47a and 50a; typical procedure

A solution of DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 13.8 \mathrm{ml}, 13.8 \mathrm{mmol}$) was added to a solution of the epoxide $\mathbf{4 1 a}(680 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and rt for 1.5 h . After the excess DIBAL-H was destroyed by an addition of moist silica gel $\left(\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}, 10: 1 ; 5 \mathrm{~g}\right)$, the mixture was diluted with MeOH and the resulting suspension was centrifuged at 3000 g for 10 min . The residue was rinsed with MeOH twice. The combined supernatant was evaporated to give the crude product which, without purification, was dissolved in $\mathrm{Py}(20 \mathrm{ml})$ and $\mathrm{Ac}_{2} \mathrm{O}(6 \mathrm{ml})$ was added to it. After being stirred at rt for 16 h , poured into ice-water and extracted with AcOEt. The extracts were washed with aq. 5% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (ether$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 4$) to afford the ($3 S, 9 \mathrm{~S}$)-allenic triol-9-O-glucoside pentaacetate $\mathbf{4 2}\left(157 \mathrm{mg}, 29 \%\right.$ from 41a) as a colorless foam. ${ }^{1} \mathrm{H}$ NMR data of the synthetic ($3 S, 9 R$)-9-O-glucoside 45 were in accordance with those of $9-O$-glucoside isolated ${ }^{7}$ from Lycium halimifolium Mill.
($\mathbf{3 S}, \mathbf{9 S}$)-9-O-Glucoside pentaacetate 42. $[a]_{\mathrm{D}}^{26}-16.5$ (c. 0.97 , $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3596$ and $3497(\mathrm{OH}), 1955(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1754$ $(\mathrm{COO}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.06$ and 1.36 (each 3 H , s, gem-Me), 1.31 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.36\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.41(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.45\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.11.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.95(1 \mathrm{H}$, ddd, $J 12.5,3.5$ and $2,2-\mathrm{H}_{\text {eq }}$) , 2.01, 2.02, 2.03, 2.04 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 5), 2.27\left(1 \mathrm{H}, \mathrm{ddd}, J 13,4\right.$ and $\left.2,4-\mathrm{H}_{\text {eq }}\right), 3.58(1 \mathrm{H}$, ddd, $J 10,5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.12\left(1 \mathrm{H}\right.$, dd, $J 12$ and $\left.2.5,6^{\prime}-\mathrm{H}\right)$, $4.24\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.5,6^{\prime}-\mathrm{H}\right), 4.37(1 \mathrm{H}, \mathrm{dq}, J 8$ and $6.5,9-\mathrm{H})$, $4.71\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.98\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.09$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.13(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 5.18(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.3^{\prime}-\mathrm{H}\right), 5.35(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 20.57,20.60,20.66$, 20.74 and $21.34\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right), 21.84\left(9-\mathrm{CH}_{3}\right), 29.18\left(1-\mathrm{CH}_{3}\right)$, $31.21\left(5-\mathrm{CH}_{3}\right), 32.20\left(1-\mathrm{CH}_{3}\right), 35.19(\mathrm{Cl}), 45.03$ and $45.08(\mathrm{C} 2$ and C4), 62.03 (C6'), 67.70 (C3), 68.44 (C4'), 71.42 (C2'), 71.76 (C5'), 71.89 (C5), 72.93 (C3'), 73.51 (C9), 96.52 (C8), 97.88 (Cl^{\prime}), 116.30 (C6), 169.21, 169.36, 170.31, 170.40 and 170.58 $\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right), 199.01(\mathrm{C} 7) ; m / z(\mathrm{SIMS}) 621.2518\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{Na}$ requires 621.2521).
(3S,9R)-9-O-Glucoside pentaacetate 45. $[a]_{\mathrm{D}}^{27}-2.0$ (c. 0.99, $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3595$ and $3487(\mathrm{OH}), 1958(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1755$ $(\mathrm{COO}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.08(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.25(3 \mathrm{H}, \mathrm{d}, J 6$, $9-\mathrm{Me}), 1.36(6 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ and $5-\mathrm{Me}), 1.36\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.46\left(1 \mathrm{H}, \mathrm{t}, J 12.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.96\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2.5,2-\mathrm{H}_{\mathrm{eq}}\right)$, $2.01(3 \mathrm{H}), 2.03(3 \mathrm{H}), 2.04(6 \mathrm{H})$ and $2.08(3 \mathrm{H})(\mathrm{each} \mathrm{s}, \mathrm{AcO} \times 5)$, $2.24\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4$ and $\left.2.5,4-\mathrm{H}_{\text {eq }}\right), 3.64(1 \mathrm{H}$, ddd, $J 9.5,4.5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.11\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.25(1 \mathrm{H}$, dd, $J 12.5$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.28(1 \mathrm{H}$, quint., $J 6,9-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}$, $\left.J 8,1^{\prime}-\mathrm{H}\right), 4.96\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.08(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.4^{\prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.35(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}$, $J 6,8-\mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 20.52,20.61,20.63,20.64$ and 20.76 $\left(9-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{COO} \times 4\right), 21.40\left(\mathrm{CH}_{3} \mathrm{COO}\right), 29.22\left(1-\mathrm{CH}_{3}\right)$, $31.16\left(5-\mathrm{CH}_{3}\right), 31.97\left(1-\mathrm{CH}_{3}\right), 35.19(\mathrm{C} 1), 45.06(\mathrm{C} 4), 45.26$ (C2), 62.08 (C^{\prime}), 67.93 (C3), 68.45 (C^{\prime}), 71.52 (C^{\prime}), 71.85 (C5'), 72.27 (C5), 72.88 (C3'), 75.22 (C9), 97.57 (C8), 99.66 (Cl^{\prime}), 116.74 (C6), 169.14, 169.41, 170.37, 170.44 and 170.66 $\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right)$, $198.70(\mathrm{C} 7) ; \mathrm{m} / \mathrm{z}(\mathrm{SIMS}) 621.2536\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{Na}$ requires 621.2520).
(3S,9S)-3-O-Glucoside pentaacetate 48. $[a]_{\mathrm{D}}^{20}-58.3$ (c. 1.05, $\mathrm{MeOH}) ; \nu_{\text {max }} / \mathrm{cm}^{-1}: 3591$ and $3508(\mathrm{OH}), 1960(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1754$ $(\mathrm{COO}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.06$ and 1.29 (each 3 H , s, gem-Me), 1.30 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.33\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.11,4-\mathrm{H}_{\mathrm{ax}}\right), 1.36$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.39\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.99(1 \mathrm{H}$, ddd, $J 12,4.5$ and $2.5,2-\mathrm{H}_{\mathrm{eq}}$), $2.00(3 \mathrm{H}), 2.03(6 \mathrm{H}), 2.05(3 \mathrm{H})$ and $2.08(3 \mathrm{H})$ (each s, $\mathrm{AcO} \times 5$), $2.17\left(1 \mathrm{H}, \mathrm{ddd}, J 13.5,4.5\right.$ and $2.5,4-\mathrm{H}_{\mathrm{eq}}$), $3.72\left(1 \mathrm{H}\right.$, ddd, $J 10,5.5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.13(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.25(1 \mathrm{H}$, dd, $J 12.5$ and 5.5 , $\left.6^{\prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.8,2^{\prime}-\mathrm{H}\right)$, $5.06\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.20\left(1 \mathrm{H}, \mathrm{t}, J 10,3^{\prime}-\mathrm{H}\right), 5.35(2 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}$ and $9-\mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 19.85\left(9-\mathrm{CH}_{3}\right), 20.62,20.63,20.71$, 20.76 and $21.27\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right)$, $29.37\left(1-\mathrm{CH}_{3}\right), 31.08\left(5-\mathrm{CH}_{3}\right)$, $32.05\left(1-\mathrm{CH}_{3}\right), 35.05(\mathrm{C} 1), 45.44(\mathrm{C} 4), 47.06(\mathrm{C} 2), 62.27\left(\mathrm{C}^{\prime}\right)$, 68.37 (C9), 68.66 (C4'), 71.52 (C2'), 71.73 (C5'), 72.28 (C5), 72.94 (C3'), 73.40 (C3), 96.14 (C8), 100.01 (Cl^{\prime}), 117.43 (C6), $169.27,169.45,170.30,170.33$ and $170.65\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right)$, 199.26 (C7); m / z (SIMS) $621.2508\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 621.2520).
(3S,9R)-3-O-Glucoside pentaacetate 51. $[a]_{\mathrm{D}}^{20}+25.3$ (c. 1.03, MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3593$ and $3487(\mathrm{OH}), 1958(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1754$ $(\mathrm{COO}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.06$ and 1.29 (each 3 H , s, gem-Me), 1.30 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.31\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.36(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.38$ $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 2.00,2.02,2.03,2.05$ and 2.08 (each 3 H , $\mathrm{s}, \mathrm{AcO} \times 5), 2.00\left(1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{eq}}\right), 2.18(1 \mathrm{H}$, ddd, $J 12.5,3.5$ and 2 , $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 3.72\left(1 \mathrm{H}, \mathrm{ddd}, J 9.5,5.5\right.$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.13(1 \mathrm{H}, \mathrm{dd}$, $J 12$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{dd}, J 12$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 8 , $\left.2^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.20\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.37$ $(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $9-\mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 19.78\left(9-\mathrm{CH}_{3}\right), 20.62$, 20.64, 20.71, 20.76 and $21.26\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right), 29.33\left(1-\mathrm{CH}_{3}\right)$, $31.13\left(5-\mathrm{CH}_{3}\right), 31.89\left(1-\mathrm{CH}_{3}\right), 35.16(\mathrm{C} 1), 45.52(\mathrm{C} 4), 47.16$ (C2), 62.27 (C6'), 68.08 (C9), 68.65 (C4'), 71.53 (C2'), 71.73 (C5'), 72.30 (C5), 72.94 (C3'), 73.49 (C3), 96.16 (C8), 100.07 $\left(\mathrm{Cl}^{\prime}\right), 117.60$ (C6), 169.29, 169.47, 170.30, 170.32 and 170.67 $\left(\mathrm{CH}_{3} \mathrm{COO} \times 5\right), 199.05(\mathrm{C} 7) ; m / z(\mathrm{SIMS}) 621.2541\left(\mathrm{M}^{-}+\mathrm{Na}\right.$, $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{Na}$ requires 621.2520).

Methanolysis of pentaacetates 42, 45, 48 and 51; typical procedure

To a solution of the pentaacetate $42(101 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml}$) was added NaOMe (1 M in $\mathrm{MeOH} ; 0.25 \mathrm{ml}$, 0.25 mmol) and the mixture was stirred at rt for 4 h . The mixture was concentrated to give a residue, which was purified by SPE CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 4: 1\right)$ to yield the hexaol $11(59 \mathrm{mg}$, 90%) as a colourless foam. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{CD}_{3} \mathrm{OD}$ solution) of the synthetic ($3 S, 9 S$)-9-O-glucosides 12 were identical with those of the glucoside isolated ${ }^{8}$ from Premna subscandes, while those (in $\mathrm{D}_{2} \mathrm{O}$ solution) of 9-O-glucosides 11 and $\mathbf{1 2}$ were accordance with those of glucosides previously prepared. ${ }^{9}$
(3S,9S)-9-O-Glucoside 11. $[a]_{\mathrm{D}}^{27}-29.1$ (c. $\left.1.00, \mathrm{MeOH}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.05$ and 1.30 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.23 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.32(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.30\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}\right)$, $1.39(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.84\left(1 \mathrm{H}, \mathrm{ddd}, J 12.5,4.5\right.$ and $\left.2,2-\mathrm{H}_{\text {eq }}\right), 2.14$ $\left(1 \mathrm{H}\right.$, ddd, $J 13,4.5$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 3.16(1 \mathrm{H}$, ddd, $J 9,6$ and 2.5 , $\left.5^{\prime}-\mathrm{H}\right), 3.18\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8,2^{\prime}-\mathrm{H}\right), 3.30\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$, $3.65\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 3.83(1 \mathrm{H}$, dd, $J 12$ and 2.5 , $\left.6^{\prime}-\mathrm{H}\right), 4.16(1 \mathrm{H}, \mathrm{tt}-\mathrm{like}, J 11.5$ and $4.5,3-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$, $4.50\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.21(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}) ; \delta_{\mathrm{c}}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 22.56\left(9-\mathrm{CH}_{3}\right), 29.60\left(1-\mathrm{CH}_{3}\right), 31.79\left(5-\mathrm{CH}_{3}\right), 33.29$ $\left(1-\mathrm{CH}_{3}\right), 36.17(\mathrm{C} 1), 49.95(\mathrm{C} 4), 50.34(\mathrm{C} 2), 62.78\left(\mathrm{C} 6^{\prime}\right), 64.76$ (C3), 71.65 (C4'), 72.70 (C5), 74.01 (C9), 75.08 (C2'), 78.08 (C5'), 78.26 (C3'), 97.79 (C8), 101.09 (Cl^{\prime}), 116.83 (C6), 201.15 (C7); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.03$ and 1.20 (each 3 H , s, gem-Me), $1.24\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.31(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.36(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.36\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.12,4-\mathrm{H}_{\mathrm{ax}}\right), 1.84(1 \mathrm{H}, \mathrm{ddd}, J 12$, 4 and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.11\left(1 \mathrm{H}, \mathrm{ddd}, J 13.5,4\right.$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 3.22(1 \mathrm{H}$,
dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 3.29\left(1 \mathrm{H}\right.$, ddd, $J 9.5,5.5$ and $\left.2,5^{\prime}-\mathrm{H}\right)$, $3.32\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 3.40\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 3.64(1 \mathrm{H}, \mathrm{dd}$, $J 12.5$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.16$ $(1 \mathrm{H}, \mathrm{tt}, J 12$ and $4,3-\mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{dq}, J 8$ and $6.5,9-\mathrm{H}), 4.59$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.23(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $21.09\left(9-\mathrm{CH}_{3}\right), 28.24\left(1-\mathrm{CH}_{3}\right), 30.49\left(5-\mathrm{CH}_{3}\right), 31.93\left(1-\mathrm{CH}_{3}\right)$, 34.61 (C1), 47.39 (C4), 47.75 (C2), 60.91 (C6'), 64.07 (C3), 69.74 (C4'), 72.01 (C5), 73.18 (C2'), 74.18 (C9), 76.05 (C3'), 76.30 (C5'), 95.84 (C8), 99.21 (Cl^{\prime}), 115.15 (C6), 200.57 (C7); m / z (SIMS) $411.1978\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}\right.$ requires 411.1993).
(3S,9R)-9-O-Glucoside 12. [a] $]_{\mathrm{D}}^{23} 0$ (c. $\left.0.77, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.10$ and 1.30 (each 3 H , s, gem-Me), $1.24(1 \mathrm{H}, \mathrm{t}$, $\left.J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.30(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.31\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.34$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.85\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.14(1 \mathrm{H}$, ddd, $J 12.5,4$ and $2,4-\mathrm{H}_{\mathrm{eq}}$), $3.16\left(1 \mathrm{H}\right.$, dd, $J 9$ and $\left.8,2^{\prime}-\mathrm{H}\right), 3.23$ (1 H , ddd, $J 9.5,5.5$ and $2.5,5^{\prime}-\mathrm{H}$), 3.31 ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$ and $4^{\prime}-\mathrm{H}$), $3.67\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 3.84(1 \mathrm{H}, \mathrm{dd}, J 12$ and 2.5 , $\left.6^{\prime}-\mathrm{H}\right), 4.16(1 \mathrm{H}, \mathrm{tt}-\mathrm{like}, J 11.5$ and $4,3-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{d}, J 8$, $\left.1^{\prime}-\mathrm{H}\right), 4.40(1 \mathrm{H}$, quint., $J 6.5,9-\mathrm{H}), 5.47(1 \mathrm{H}, \mathrm{d}, J 6.5,8-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 19.89\left(9-\mathrm{CH}_{3}\right), 28.82\left(1-\mathrm{CH}_{3}\right), 30.84$ $\left(5-\mathrm{CH}_{3}\right), 32.29\left(1-\mathrm{CH}_{3}\right), 35.53(\mathrm{C} 1), 49.27(\mathrm{C} 4), 49.83(\mathrm{C} 2)$, 62.05 (C6'), 64.05 (C3), 70.86 (C4'), 72.09 (C5), 74.51 (C2'), 75.20 (C9), 77.24 (C5'), 77.46 (C3'), 98.32 (C8), 102.36 ($\left.\mathrm{Cl}^{\prime}\right)$, $116.59(\mathrm{C} 6), 199.43(\mathrm{C} 7) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.07$ and 1.20 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.25\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.28(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.32(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.38(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 12 , $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.85\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.11(1 \mathrm{H}$, ddd, $J 12.5,4$ and $2,4-\mathrm{H}_{\text {eq }}$), 3.19 (1 H , dd, $J 9$ and $8,2^{\prime}-\mathrm{H}$), $3.34\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.41\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right), 3.67$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.5,6^{\prime}-\mathrm{H}\right), 3.84\left(1 \mathrm{H}\right.$, dd, $J 12$ and $\left.0.5,6^{\prime}-\mathrm{H}\right)$, $4.16(1 \mathrm{H}, \mathrm{tt}, J 12$ and $4,3-\mathrm{H}), 4.44(1 \mathrm{H}$, quint., $J 6.5,9-\mathrm{H}), 4.52$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.41(1 \mathrm{H}, \mathrm{d}, J 6.5,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $19.83\left(9-\mathrm{CH}_{3}\right), 28.33\left(1-\mathrm{CH}_{3}\right), 30.38\left(5-\mathrm{CH}_{3}\right), 31.66\left(1-\mathrm{CH}_{3}\right)$, $34.70(\mathrm{C} 1), 47.42$ (C4), 47.91 (C2), 60.90 (C^{\prime}), 64.10 (C3), 69.69 (C4'), 72.23 (C5), 73.41 (C^{\prime}), 76.04, 76.21 and 76.40 (C3', C5' and C9), 96.93 (C8), 101.12 (C1'), 115.55 (C6), 199.76 (C7); m / z (SIMS) $411.1996\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}\right.$ requires 411.1993).
(3S,9S)-3-O-Glucoside 13. $[a]_{\mathrm{D}}^{20}-57.8$ (c. $\left.0.69, \mathrm{MeOH}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.05$ and 1.21 (each 3 H , s, gem-Me), 1.23 $(3 \mathrm{H}, \mathrm{d}, J 6,9-\mathrm{Me}), 1.32(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.37\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.42\left(1 \mathrm{H}, \mathrm{t}, J 12.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12,2-\mathrm{H}_{\mathrm{eq}}\right), 2.23(1 \mathrm{H}$, br d, $J 12.5,4-\mathrm{H}_{\text {eq }}$), $3.18\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 3.34(1 \mathrm{H}, \mathrm{t}$, $\left.J 9,4^{\prime}-\mathrm{H}\right), 3.42\left(1 \mathrm{H}\right.$, ddd, $J 9,6$ and $\left.2,5^{\prime}-\mathrm{H}\right), 3.45(1 \mathrm{H}, \mathrm{t}, J 9$, $\left.3^{\prime}-\mathrm{H}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 3.87(1 \mathrm{H}, \mathrm{dd}, J 12$ and 2 , $\left.6^{\prime}-\mathrm{H}\right), 4.28(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.34(1 \mathrm{H}$, quint., $J 6,9-\mathrm{H}), 4.55(1 \mathrm{H}$, d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 5.37(1 \mathrm{H}, \mathrm{d}, J 6,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 21.81$ $\left(9-\mathrm{CH}_{3}\right), 28.38\left(1-\mathrm{CH}_{3}\right), 30.08\left(5-\mathrm{CH}_{3}\right), 31.84\left(1-\mathrm{CH}_{3}\right), 34.54$ (C1), 44.89 (C4), 46.46 (C2), 60.86 (C6'), 66.11 (C9), 69.81 (C4'), 72.06 (C5), 73.25 (C2'), 73.42 (C3), 75.96 and 76.01 ($\mathrm{C}^{\prime}{ }^{\prime}$ and C^{\prime}), 98.51 (C8), 100.86 ($\left.\mathrm{C1}^{\prime}\right), 115.71$ (C6), 199.00 (C7); m / z (SIMS) $411.2007\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}\right.$ requires 411.1993).
(3S,9R)-3-O-Glucoside 14. $[a]_{\mathrm{D}}^{27}-26.3$ (c. $\left.0.99, \mathrm{MeOH}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.05$ and 1.21 (each 3 H , s, gem-Me), 1.23 $(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.33(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.37(1 \mathrm{H}, \mathrm{t}, J 12.5$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.43\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.12,4-\mathrm{H}_{\mathrm{ax}}\right), 1.96(1 \mathrm{H}, \mathrm{ddd}, J 12.5$, 4 and $2,2-\mathrm{H}_{\mathrm{eq}}$), $2.24\left(1 \mathrm{H}\right.$, ddd, $J 13,4$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 3.18(1 \mathrm{H}$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 3.34\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 3.43(1 \mathrm{H}$, ddd, $J 9.5,6$ and $\left.2,5^{\prime}-\mathrm{H}\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, J 12$ and $\left.6 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.29(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 4.34(1 \mathrm{H}$, quint, $J 6.5,9-\mathrm{H}), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.37$ $(1 \mathrm{H}, \mathrm{d}, J 6.5,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 21.83\left(9-\mathrm{CH}_{3}\right), 28.38$ $\left(1-\mathrm{CH}_{3}\right), 30.25\left(5-\mathrm{CH}_{3}\right), 31.59\left(1-\mathrm{CH}_{3}\right), 34.67(\mathrm{C} 1), 44.83(\mathrm{C} 4)$, 46.52 (C2), 60.86 (C6'), 66.24 (C9), 69.81 (C4'), 72.08 (C5), 73.26 (C2'), 73.43 (C3), 75.96 and 76.01 (C^{\prime} and $\mathrm{C} 5^{\prime}$), 98.52
(C8), 100.86 (C1'), 115.69 (C6), 198.93 (C7); m / z (SIMS) $411.2011\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}\right.$ requires 411.1993).

Enzymatic hydrolysis of allenic triol-glucosides 11, 12, 13 and 14; typical procedure

β-Glucosidase from sweet almonds (Nacalai tesque Co., 30 mg) was added to a solution of the glucoside $11(20 \mathrm{mg})$ in water $(3 \mathrm{ml})$ and the mixture was stirred at $37{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was concentrated in vacuo to furnish a residue, which was purified by $\mathrm{SCC}\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 15: 85\right)$ to provide the aglycone. This was dissolved in $\mathrm{AcOEt}(3 \mathrm{ml})$ and active $\mathrm{MnO}_{2}(160 \mathrm{mg})$ was added to it. After being stirred at rt for 4 h , the mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by SPE CC (acetone-hexane, 1:3) to give grasshopper ketone $\mathbf{3}(10.7 \mathrm{mg}$, 93% from 11). ${ }^{1} \mathrm{H}$ NMR data were identical with those reported. ${ }^{19}$

Benzoylation of allenic triol-glucosides 11, 12, 13 and 14; typical procedure

To a solution of the hexaol $11(6.4 \mathrm{mg}, 0.016 \mathrm{mmol})$ in $\mathrm{Py}(1 \mathrm{ml})$ was added $\mathrm{BzCl}(0.2 \mathrm{ml}, 1.7 \mathrm{mmol})$ and the reaction mixture was stirred at rt for 24 h , poured into ice-water and extracted with AcOEt. The extracts were washed with aq. 5% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (ether$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 4$) and then PTLC (ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$) to afford the pentabenzoate 43 ($13.6 \mathrm{mg}, 91 \%$) as a colorless foam.
(3S,9S)-9-O-Glucoside pentabenzoate 43. $\lambda_{\text {max }} / \mathrm{nm} 230,273$; $v_{\text {max }} / \mathrm{cm}^{-1} 3594(\mathrm{OH}), 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1732(\mathrm{COO}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.00$ and 1.35 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.31 ($3 \mathrm{H}, \mathrm{d}, J 6.5$, $9-\mathrm{Me}), 1.35-1.48\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.44(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.03\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $2,2-\mathrm{H}_{\mathrm{eq}}$), 2.27 (1 H , ddd, $J 13,4$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 4.06\left(1 \mathrm{H}\right.$, ddd, $J 9.5,6$ and $\left.3,5^{\prime}-\mathrm{H}\right), 4.45(1 \mathrm{H}, \mathrm{m}$, $9-\mathrm{H}), 4.48\left(1 \mathrm{H}\right.$, dd, $J 12$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.66(1 \mathrm{H}$, dd, $J 12$ and 3 , $\left.6^{\prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.09(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 5.53(1 \mathrm{H}$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.55(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.64(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.4^{\prime}-\mathrm{H}\right), 5.87\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 7.26-7.60(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, 7.81-8.06 (10H, m, Ar-H); m/z (SIMS) $931.3301\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na}$ requires 931.3303).
(3S,9R)-9-O-Glucoside pentabenzoate 46. $\lambda_{\text {max }} / \mathrm{nm} 230,273$; $v_{\max } / \mathrm{cm}^{-1} 3593(\mathrm{OH}), 1963(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1732(\mathrm{COO}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.07(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{Me}), 1.34(6 \mathrm{H}$, $\mathrm{s}, 1-\mathrm{Me}$ and $5-\mathrm{Me}), 1.43\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.52(1 \mathrm{H}, \mathrm{t}$, $\left.J 12,4-\mathrm{H}_{\mathrm{ax}}\right), 2.05\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.30$ (1 H, ddd, $J 12,3.5$ and $2,4-\mathrm{H}_{\mathrm{eq}}$), 4.12 (1 H , ddd, $J 9.5,6$ and $\left.3,5^{\prime}-\mathrm{H}\right), 4.37(1 \mathrm{H}$, quint., $J 6.5,9-\mathrm{H}), 4.50(1 \mathrm{H}$, dd, $J 12$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.3,6^{\prime}-\mathrm{H}\right), 4.97(1 \mathrm{H}, \mathrm{d}$, $\left.J 8,1^{\prime}-\mathrm{H}\right), 5.44(1 \mathrm{H}, \mathrm{d}, J 6.5,8-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 8 , $\left.2^{\prime}-\mathrm{H}\right), 5.57(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.65\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.89(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right), 7.25-7.58(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.81-8.06(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ; m / z$ (SIMS) $931.3307\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{54} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 931.3303).
(3S,9S)-3-O-Glucoside pentabenzoate 49. $\lambda_{\max } / \mathrm{mm} \mathrm{230}, \mathrm{273;}$ $v_{\max } / \mathrm{cm}^{-1} 3592(\mathrm{OH}), 1962(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1732(\mathrm{COO}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 0.98,1.20$ and 1.24 (each 3 H , s, gem-Me and 5-Me), 1.21 $\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.29\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.38(3 \mathrm{H}, \mathrm{d}, J 6,9-\mathrm{Me})$, $1.96\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.5,2-\mathrm{H}_{\text {eq }}\right), 2.08\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12,4-\mathrm{H}_{\text {eq }}\right), 4.18$ (1 H , ddd, $J 9.5,6$ and $3,5^{\prime}-\mathrm{H}$), $4.25(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.50(1 \mathrm{H}$, dd, $J 12$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.3,6^{\prime}-\mathrm{H}\right), 4.98(1 \mathrm{H}, \mathrm{d}$, $\left.J 8,1^{\prime}-\mathrm{H}\right), 5.43(1 \mathrm{H}, \mathrm{d}, J 5.5,8-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 8 , $\left.2^{\prime}-\mathrm{H}\right), 5.57(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.62\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.89(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right), 7.25-7.56(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.81-8.05(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}) ; m / z$ (SIMS) $931.3293\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{54} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 931.3303).
(3S,9R)-3-O-Glucoside pentabenzoate 52. $\lambda_{\max } / \mathrm{mm} \mathrm{230}, \mathrm{273;}$ $v_{\text {max }} / \mathrm{cm}^{-1} 3593(\mathrm{OH}), 1963(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1732(\mathrm{COO}) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 1.01(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.19$ and 1.20 (each $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ and $5-\mathrm{Me}), 1.2\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.27\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.39(3 \mathrm{H}, \mathrm{d}$, $J 6.5,9-\mathrm{Me}), 1.96\left(1 \mathrm{H}\right.$, br d, $\left.J 12.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12$, $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 4.17\left(1 \mathrm{H}, \mathrm{ddd}, J 9.5,6\right.$ and $\left.3,5^{\prime}-\mathrm{H}\right), 4.23(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $4.50\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.6,6^{\prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.3,6^{\prime}-\mathrm{H}\right)$, $4.95\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.42(1 \mathrm{H}, \mathrm{d}, J 4.5,8-\mathrm{H}), 5.48(1 \mathrm{H}, \mathrm{dd}$, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.60(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.61\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$, $5.87\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 7.2-7.6(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.8-8.1(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; m / z$ (SIMS) $931.3320\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{54} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na}\right.$ requires 931.3303).

Acknowledgements

We are indebted to Drs U. Hengartner and K. Bernhard, Hoffmann-La Roche Ltd., Basel, Switzerland for chemical support. We thank Dr T. Yamano, Mr M. Yamashita and Dr M. Kawada, Takeda Chemical Industries, Ltd. for valuable discussions and Miss Y. Kaneko and Miss T. Nokura for technical assistance.

References

1 E. Demole, P. Enggist, U. Säuberli, M. Stoll and E. Kováts, Helv. Chim. Acta, 1970, 53, 541.
2 (a) W. Renold, R. Näf-Muller, U. Keller, B. Willhalm and G. Ohloff, Helv. Chim. Acta, 1974, 57, 1301; (b) T. E. Acree, P. Braell and R. M. Butts, J. Agric. Food Chem., 1981, 29, 688; (c) R. G. Buttery, G. Takeoka, R. Teranishi and L. C. Ling, J. Agric. Food Chem., 1990, 38, 2050; (d) C. Araki and H. Sakakibara, Agric. Biol. Chem., 1991, 55, 1421; (e) A. Sen, G. Laskawy, P. Schieberle and W. Grosch, J. Agric. Food Chem., 1991, 39, 757.

3 (a) G. Ohloff, V. Rautenstrauch and K. H. Schulte-Elte, Helv. Chim. Acta, 1973, 56, 1503; (b) S. Isoe, S. Katsumura and T. Sakan, Helv. Chim. Acta, 1973, 56, 1514; (c) G. K. Skouroumounis and M. A. Sefton, J. Agric. Food Chem., 2000, 48, 2033.

4 C. J. Puglisi, G. M. Elsey, R. H. Prager, G. K. Skouroumounis and M. A. Sefton, Tetrahedron Lett., 2001, 42, 6937.

5 B. Baderschneider, G. Skouroumounis and P. Winterhalter, Nat. Prod. Lett., 1997, 10, 111.
6 M. Straubinger, H. Knapp, N. Oka, N. Watanabe and P. Winterhalter, J. Agric. Food Chem., 1997, 45, 4053.
7 R. Näf, A. Velluz and W. Thommen, Tetrahedron Lett., 1990, 31, 6521.

8 H. Sudo, T. Ide, H. Otsuka, E. Hirata, A. Takushi, T. Shinzato and Y. Takeda, Chem. Pharm. Bull., 2000, 48, 542.

9 M. Suzuki, S. Matsumoto, M. Mizoguchi, S. Hirata, K. Takagi, I. Hashimoto, Y. Yamano, M. Ito, P. Fleischmann, P. Winterhalter, T. Morita and N. Watanabe, Biosci. Biotechnol. Biochem., 2002, 66, 2690.

10 Y. Yamano, Y. Watanabe, N. Watanabe and M. Ito, Chem. Pharm. Bull., 2000, 48, 2017.
11 K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1997, 119, 8738.

12 G. K. Skouroumounis, R. A. Massy-Westropp, M. A. Sefton and P. J. Williams, J. Agric. Food Chem., 1995, 43, 974.

13 M. Soukup, E. Widmer and T. Lukác, Helv. Chim. Acta, 1990, 73, 868.

14 H. G. W. Leuenberger, W. Boguth, E. Widme and R. Zell, Helv. Chim. Acta, 1976, 59, 1832.
15 K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 36, 285.
16 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991, 113, 4092.
17 (a) Y. Yamano, Y. Sakai, S. Yamashita and M. Ito, Heterocycles, 2000, 52, 141; (b) Y. Yamano, Y. Sakai, M. Hara and M. Ito, J. Chem. Soc., Perkin Trans. 1, 2002, 2006.

18 H. Kunz and A. Harreus, Liebigs Ann. Chem., 1982, 41.
19 A. Baumeler, W. Brade, A. Haag and C. H. Eugster, Helv. Chim. Acta, 1990, 73, 700.
20 Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1993, 1599.
21 (a) G. K. Skouroumounis and P. Winterhalter, J. Agric. Food Chem., 1994, 42, 1068; (b) S. Shimizu, T. Miyase, A. Ueno and K. Usmanghani, Phytochemistry, 1989, 28, 3399; (c) T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi and H. Karasawa, Chem. Pharm. Bull., 1987, 35, 1109.

